

Transportation Resilience Planning Tool (TRPT)

MUNICIPAL DAY, 2023 OCTOBER 20, 2023

Fitzgerald Environmental Associates, LLC.

Applied Watershed Science & Ecology

Andrea Wright, PE Environmental Policy Manager Vermont Agency of Transportation 802-917-1586 Andrea.Wright@vermont.gov

Joe Segale. PE/PTP Policy, Planning and Research Director Vermont Agency of Transportation (RETIRED)

Johnathan Croft Mapping Section Chief Vermont Agency of Transportation 802-828-2600 johnathan.croft@vermont.gov

James Blouin GIS Professional Mapping Section Vermont Agency of Transportation 802-595-2245 james.blouin@vermont.gov

Pam DeAndrea GIS Professional Mapping Section Vermont Agency of Transportation 802-793-7555 Pam.DeAndrea@vermont.gov

Otis Ellms-Munroe Environmental Planning Coordinator Vermont Agency of Transportation 802-793-3504 Otis.EllmsMunroe@vermont.gov

Project Partners

Vermont State Agencies

- Agency of Transportation
- Agency of Digital Services
- Agency of Natural Resources
- Emergency Management
- Agency of Commerce and Community Development

Project Consultants

- SLR Consulting
- Fitzgerald Environmental
- Stone Environmental
- University of Vermont
- Smart Mobility
- DuBois & King

Regional Planning Commissions

- Addison County Regional Planning Commission (ACRPC)
- Bennington County Regional Commission (BCRC)
- Central Vermont Regional Planning Commission (CVRPC)
- Chittenden County Regional Planning Commission (CCRPC)
- Lamoille County Planning Commission (LCPC)
- Mount Ascutney Regional Commission (MARC)
- Northeastern Vermont Development Association (NVDA)
- Northwest Regional Planning Commission (NRPC)
- Rutland Regional Planning Commission (RRPC)
- Two Rivers-Ottauquechee Regional Commission (TRORC)
- Windham Regional Commission (WRC)

Agenda

- 1. Introduction
- 2. Vulnerability Analysis and Scoring
- 3. Criticality Analysis and Scoring
- 4. Demo and Q&A
- 5. Additional Resilience Efforts and Resources

Irene and July 2023

- State Highway Costs (Emergency and Permanent Repairs)
 - Irene: ~ \$138M
 - VT23-1: ~ \$142M
- In the time between the two storms 2011-2023 Vermont Agency of Transpiration:
 - Programmed \$229.4 million of Federal emergency relief assistance
 - Nearly 130 projects, ranging from minor damage repair to major reconstruction of bridges and highways, were accomplished.
 - These project locations either had **none or very minimal** damage from the July 2023 event

TRPT Website

Direct link to TRPT

https://roadfloodresilience.vermont.gov

Link to VTrans TRPT Website

https://vtrans.vermont.gov/planning/transportation-resilience

https://resources.vtrans.vermont.gov/vtransResilienceAppTEST/#/map

Recurrence Interval (years)	Annual Exceedance Probability (AEP; %)	Typical Scenario
10	10%	High-intensity, short-duration summer thunder burst
50	2%	Local floods from repetitive thunderstorms in one or more watersheds in short periods of times (i.e., training storms) resulting in localized loss of structures and road segments
100	1%	Regional floods such as nor'easters and tropical storms that impact large areas of the state with major road and infrastructure loss

<u>Vulnerability</u>: The extent that a transportation asset is exposed to a threat from inundation, erosion, or deposition.

<u>Criticality</u>: How important is the transportation asset that dictates the consequence of the disruption to mobility due to damage.

<u>Risk</u>: The combination of the probability of vulnerability and criticality.

Where is Vulnerability Unlikely?

Any road segment <u>not</u> within 100-feet of a valley floor were assigned a vulnerability of 0.

Inundation, Erosion, Deposition

Great Brook Brook Road Damage, 10-Year Flood Plainfield, VT 7/20/2015 Photo taken by B. Towbin

Great Brook Brook Road Damage, 10-Year Flood Plainfield, VT 7/19/2015 Photo taken by B. Towbin

Inundation

Winooski River Cochran Road in Richmond, VT 8/29/2011 Photo taken by Shem Roose Photography

C Shem Roose

Erosion

Mendon Brook US 4 in Mendon, VT 9/1/2011 Photo taken by J. Louisos

Deposition

Money Brook, Route 100 in Plymouth, VT 1973 Photo taken by M. Tucker

Failure Modes

Failure Mode	Influence	Damage Distance	Vulnerability Type		
Partial Closure <24 hours Single lane closure		100 feet or less	Temporary inundation Minor erosion		
	Shoulder repair Reduced capacity with some travel		Minor deposition		
Full Closure	24 hours to several days Multi-lane closure Detour required	100s of feet	Large-scale Inundation Localized erosion Localized deposition		
Temporary Failure	Partial destruction of facility Days to a week for recovery Maintain one lane if possible Detour required	100s to 1,000s of feet	Erosion Deposition Large-scale Inundation		
Complete Failure Week to months for recovery Long-term travel disruptions		Varies	Erosion Deposition		

(Adapted from FHWA and WSDOT, 2019)

Failure Mode - Partial Closure

Great Brook Creamery Street in Plainfield, VT 5/27/2011 Photo taken by G. Springston

> Great Brook Brook Road in Plainfield, VT 7/20/2015 Photo taken by B. Towbin

Failure Mode – Complete Failure

Photo credits: Lars Grange, Mansfield Heliflight

Vulnerability Variables

		VARIABLES		SCALE			
	More detailed variables	Inundation	Erosion	Deposition	Road Segments	Structures	River Segments
*	Documented Past Damages	V	٧	V	V	v	
*	River-Roadway Relief (feet)	V			V		
	Incision Ratio and Entrenchment Ratio	V	٧				V
*	FEMA 100-Year Flood Depth Above Road (feet)	V			V		
	Length of Road in 100-Year Floodplain (feet)	V			V		
*	Bridge/Culvert Invert-Roadway Relief (feet)	V				V	
	Structure Width vs. Bankfull Channel Width (%) (HGR-based)	V	V	V		V	
	Specific Stream Power (W/m ²)		V	V			V
	Dominant Substrate Size		V				V
	Valley Confinement		V				V
	Remaining River Corridor Width where the ROW or		v		v		
	Development Confine River (%)				·		
	Length of ROW in River Corridor (feet)		V	V	V		
	Erosion (SGA Data, GC Screen)		V			V	
	Armoring (SGA Data, GC Screen)		V			V	
	Culvert Slope (SGA Data, GC Screen)		V			V	
	5% or Larger Slope Decrease Areas (count)			V			V
	3rd Order or Larger Confluences (count)			V			V
*	Change in Confinement Ratio from Upstream Reach			V			V
	Road Crossings (count)			V	V		
*	Mass Failures in Upstream Reach (feet)			V			V
	Bank Erosion in Upstream Reach (% of Channel Length)			V			٧
	Channel Slope (SGA Data)			V			٧
	Sediment Discontinuity (SGA Data, GC Screen)			V		V	
	Approach Angle (SGA Data, GC Screen)			V		V	
	Less detailed variables (to replace more detailed variables wh	en they do no	t exist)				
	Valley Slope	V					V
	Surficial Landform in Corridor Area		V				V
	Steep slopes in Upstream or First Order Reach (feet)			V			٧

Vulnerability

 $V_{\text{ROAD EMBANKMENT}} = MAX(V_{I,ROAD}; V_{E,ROAD}; V_{D,ROAD})$ $V_{\text{BRIDGES}} = MAX(V_{I, BRIDGES}; V_{E,BRIDGES}; V_{D,BRIDGES})$ $V_{\text{CULVERTS}} = MAX(V_{I,CULVERTS}; V_{E,CULVERTS}; V_{D,CULVERTS})$ where: I = inundation, E = erosion, D = deposition

Criticality

- 1. Network Criticality
 - Impact on travel due to failed trips and delays associated with simulated flood damage
- 2. Critical Closeness Accessibility
 - Importance of a road link access to critical facilities such as hospitals
- 3. Locally Identified Importance
 - Importance of a road for local use as reported by residents

Illustration of vulnerability-based criticality showing low (blue) and high (orange) criticality scenarios

Risk

Risk is equal to the average of Vulnerability and Criticality.

Value	Risk				
> 5	High				
2-5	Medium				
0-2	Low				

Statewide Field QA

TRPT properly identified risk at 9 of 10 sites visited.

TRPT Limitations

- The TRPT is static data viewer.
 Conditions may have changed if damages have occurred or a mitigation project was implemented.
- Errors are possible with a watershedbased analysis where GIS data do not resolve key site features such as bedrock or disconnected floodplains.

Mitigation

Placed riprap wall

VT Route 155, Mt. Holly, VT

(E. Fitzgerald, 2013)

Mitigation

Floodplain Restoration Example

Roaring Branch Bennington, VT 2008 Roaring Branch Bennington, VT 2010

https://vtrans.vermont.gov/planning/tran sportation-resilience

Additional Resources

- Part 667 <u>Reducing Repeat Damage</u> <u>Tool</u>
- VTrans <u>Resilience Improvement Plan</u> (RIP), <u>RIP analysis</u>, and <u>PROTECT</u>
- FHWA <u>Emergency Relief (ER) Program</u>

Thank You!

- Link to VTrans TRPT Website
 https://vtrans.vermont.gov/planning/transportation-resilience
- Contacts
 - Otis Ellms-Munroe <u>Otis.EllmsMunroe@vermont.gov</u>
 - Andrea Wright <u>Andrea.Wright@vermont.gov</u>
 - James Blouin <u>James.Blouin@vermont.gov</u>
 - Pam DeAndrea <u>Pam.DeAndrea@vermont.gov</u>