Vermont Agency of Natural Resources Climate Change Adaptation Framework May 31, 2013

## Appendix 3

# APPENDIX 3A

Sample vulnerability assessment worksheets

#### **EXPOSURES/KEY CLIMATE CHANGE FACTORS**

|          | Code | Parameter                   | Trend    | Projections (range = low to high emissions scenario)                                                                                                                           |
|----------|------|-----------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Α    | Annual temperature          | increase | by 2050, projected increase 3.7 to 5.8°F; by 2100, 5.0 to 9.5°F                                                                                                                |
| ature    | В    | Seasonal<br>temperature     | increase | by 2050, projected increase in winter (DJF) 4.3 to 6.1°F;<br>summer (JJA) 3.8 to 6.4°F                                                                                         |
| mper     | С    | # Hot days                  | more     | more frequent and more intense; by end of century, northern cities can expect 30-60+ days of temperatures >90°F                                                                |
| Te       | D    | # Cold days                 | fewer    | reduction in days with cold (<0° F) temperatures                                                                                                                               |
|          | Ε    | Variability                 | increase | greater variability (more ups and downs)                                                                                                                                       |
|          | F    | Annual precipitation        | increase | by end of century, projected total increase of 10% (about 4 inches per year)                                                                                                   |
|          | G    | Seasonal precipitation      | variable | more winter rain, less snow; by 2050, winter precipitation could<br>increase by 11 to 16% on average; little change expected in<br>summer, but projections are highly variable |
|          | Н    | Heavy rainfall<br>events    | increase | more frequent and intense                                                                                                                                                      |
| gy       | Ι    | Soil moisture               | decrease | reduction in soil moisture and increase in evaporation rates in the summer                                                                                                     |
| drolo    | J    | Snow                        | decrease | fewer days with snow cover (by end of century could lose 1/4 to 1/2+ of snow-covered days; increased snow density                                                              |
| Hy       | K    | Spring flows                | earlier  | earlier snowmelt, earlier high spring flows; could occur 10 days to >2 weeks earlier                                                                                           |
|          | L    | Summer low flows            | longer   | extended summer low-flow periods; could increase by nearly a month under high emissions scenario                                                                               |
|          | Μ    | Ice dynamics                | changing | less ice cover, reduced ice thickness                                                                                                                                          |
|          | Ν    | Fluctuating lake levels     | increase | greater variability, greater amount of change in lake levels                                                                                                                   |
|          | 0    | Lake stratification         |          | some lakes may stratify earlier                                                                                                                                                |
| nts      | Р    | Flood events                | increase | more likely, particularly in winter and particularly under the high emissions scenario                                                                                         |
| ime evel | Q    | # of short-term<br>droughts | increase | by end of century, under high emissions scenario, short terms<br>droughts could occur as much as once per year in some places                                                  |
| tre      | R    | Storms                      | increase | more frequent and intense (ice, wind, etc.)                                                                                                                                    |
| Ex       | S    | Fire                        |          | more likely                                                                                                                                                                    |
| S.       | Т    | Growing season              | longer   | by end of century, projected to be 4 to 6 weeks longer                                                                                                                         |
| log      | U    | Onset of spring             | earlier  | by end of century, could be 1 to almost 3 weeks earlier                                                                                                                        |
| )<br>U   | V    | Onset of fall               | later    | by end of century, could arrive 2 to 3 weeks later                                                                                                                             |
| Phe      | W    | Biological interactions     |          | could potentially be disrupted                                                                                                                                                 |

#### Add ins:

- **X** changing light conditions **Y** spring runoff reduced volume

| Natural (                                                                      | Community Type                | Subalpine<br>Krummholz | Montane Spruce-<br>Fir Forest | Red Spruce-<br>Heath Rocky<br>Ridge Forest | Montane Yellow<br>Birch-Red<br>Spruce Forest | Red Spruce-<br>Northern<br>Hardwood Forest | Lowland Spruce-<br>Fir Forest | Boreal Talus<br>Woodland | Cold-Air Talus<br>Woodland |
|--------------------------------------------------------------------------------|-------------------------------|------------------------|-------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------|--------------------------|----------------------------|
|                                                                                | Patch Size                    | S-L                    | М                             | S-L                                        | М                                            | М                                          | L-M                           | S                        | S                          |
|                                                                                | S rank                        | <i>S1</i>              | <i>S3</i>                     | <i>S3</i>                                  | <i>S3</i>                                    | <i>S4</i>                                  | <i>S3</i>                     | <i>S3</i>                | S1                         |
|                                                                                | List exposures th             | at you think will neg  | atively impact this na        | tural community typ                        | e (we encourage you                          | to use codes from th                       | e exposures list but f        | ree text is ok as well,  | )                          |
| ş                                                                              | Thermal                       |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| ge Factor                                                                      | Hydrologic                    |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| ate Chang                                                                      | Extreme<br>events/disturbance |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| Key Clim                                                                       | Phenology                     |                        |                               |                                            |                                              |                                            |                               |                          |                            |
|                                                                                | Other                         |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| List the exposures that you<br>think will have the greatest<br>negative impact |                               |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| List the exposures that you<br>think might be beneficial                       |                               |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| Composition changes?                                                           |                               |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| Vulnerability Rating                                                           |                               |                        |                               |                                            |                                              |                                            |                               |                          |                            |
| Confidence Score                                                               |                               |                        |                               |                                            |                                              |                                            |                               |                          |                            |

#### Table 3A-1. Sample worksheet for the upland forest group (spruce-fir formation).

| List exposures that you think will have direct, negative impacts on this type of wetland (we encourage codes from the exposures list but free text is ok as well)      |                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| ate Change Factors                                                                                                                                                     | Thermal                       |  |
|                                                                                                                                                                        | Hydrologic                    |  |
|                                                                                                                                                                        | Extreme<br>events/disturbance |  |
| y Clin                                                                                                                                                                 | Phenology                     |  |
| Ke                                                                                                                                                                     | Other                         |  |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why |                               |  |
| Vulnerability Rating                                                                                                                                                   |                               |  |
| Confidence Score                                                                                                                                                       |                               |  |
| Mediating Factors                                                                                                                                                      |                               |  |

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>wetland                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Are there any exposures that<br>you think might be beneficial<br>to this type of wetland? If so,<br>please describe                                 |  |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              |  |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            |  |
| Do you actively manage this<br>type of wetland? If so,<br>describe how (BMPs,<br>regulatory mechanisms, etc.)                                       |  |
| List species associated with<br>this type of wetland that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why |  |
| List species associated with<br>this type of wetland that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 |  |

#### Shrub Swamps – PAGE 3

| Natural Community Type     | Patch<br>Size | S<br>rank |
|----------------------------|---------------|-----------|
| Alluvial Shrub Swamp       | L             | S3        |
| Alder Swamp                | L             | S5        |
| Sweet Gale Shoreline Swamp | S             | S3        |
| Buttonbush Swamp           | S             | S2        |
| Buttonbush Basin Swamp     | S             | S2        |

Shrub Swamps encompass the following natural community types:

Do you think these natural community types are likely to respond similarly to climate change? If not, describe differences

Do you manage these natural community types differently from one another? If so, describe

| Table 3A-3. Sample worksheet for the rivers group (high gradient, source/headwater streams). |                                                                                                                  |                                                  |                                   |                              |                              |                                   |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|------------------------------|------------------------------|-----------------------------------|
| Physic                                                                                       | cal Attributes                                                                                                   | Stream, Riparian, and<br>Floodplain Connectivity | Sediment Regime                   | Hydrologic Regime            | Temperature Regime           | Large Wood and<br>Organics Regime |
| List exp<br>as well                                                                          | posures that you think will<br>)                                                                                 | have <b>direct,</b> negative impacts on p        | physical processes in this stream | ı class (we encourage you te | o use codes from the exposur | res list but free text is ok      |
| actors                                                                                       | Thermal                                                                                                          |                                                  |                                   |                              |                              |                                   |
| nge F                                                                                        | Hydrologic                                                                                                       |                                                  |                                   |                              |                              |                                   |
| nate Cha                                                                                     | Extreme<br>events/disturbance                                                                                    |                                                  |                                   |                              |                              |                                   |
| Clin                                                                                         | Phenology                                                                                                        |                                                  |                                   |                              |                              |                                   |
| Key                                                                                          | Other                                                                                                            |                                                  |                                   |                              |                              |                                   |
| Whic<br>expos<br>comb<br>expos<br>will h<br>negat<br>Descr                                   | h of these<br>ures (or<br>ination of<br>ures) do you think<br>ave the greatest<br><i>ive</i> impacts?<br>ibe why |                                                  |                                   |                              |                              |                                   |
| Vulnerability Rating                                                                         |                                                                                                                  |                                                  |                                   |                              |                              |                                   |
| Confidence Score                                                                             |                                                                                                                  |                                                  |                                   |                              |                              |                                   |
| Mediating Factors                                                                            |                                                                                                                  |                                                  |                                   |                              |                              |                                   |

| Physical Attributes                                                                                                                                       | Stream, Riparian, and<br>Floodplain Connectivity | Sediment Regime | Hydrologic Regime | Temperature Regime | Large Wood and<br>Organics Regime |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|-------------------|--------------------|-----------------------------------|
| Describe ways in<br>which you think<br>climate change may<br><i>indirectly</i> impact<br>these physical<br>processes                                      |                                                  |                 |                   |                    |                                   |
| Describe changes that<br>you think might<br>occur in the biological<br>assemblages due to<br>these changes in<br>physical processes                       |                                                  |                 |                   |                    |                                   |
| Are there any<br>exposures that you<br>think might be<br><i>beneficial</i> to these<br>processes? If so,<br>please describe                               |                                                  |                 |                   |                    |                                   |
| List <i>non-climatic</i><br><i>stressors</i> that affect<br>this group; highlight<br>those that you think<br>pose a greater threat<br>than climate change |                                                  |                 |                   |                    |                                   |
| Please rate<br>vulnerability to non-<br>climatic stressors                                                                                                |                                                  |                 |                   |                    |                                   |

#### BACK – High Gradient, Source/Headwater Streams

| List exposures that you think will have direct, negative impacts on this type of lake (we encourage you to use codes from the exposures list but free text is ok as well) |                                                                                                                                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OrS                                                                                                                                                                       | Thermal                                                                                                                                  |  |  |  |
| nge Fact                                                                                                                                                                  | Hydrologic                                                                                                                               |  |  |  |
| ate Char                                                                                                                                                                  | Extreme<br>events/disturbance                                                                                                            |  |  |  |
| y Clin                                                                                                                                                                    | Phenology                                                                                                                                |  |  |  |
| Ke                                                                                                                                                                        | Other                                                                                                                                    |  |  |  |
| Whice<br>expose<br>comb<br>expose<br>will h<br>negate<br>overa<br>Descr                                                                                                   | ch of these<br>sures (or<br>bination of<br>sures) do you think<br>have the greatest<br>tive impacts on<br>all lake function?<br>cibe why |  |  |  |
| Vulnerability Rating                                                                                                                                                      |                                                                                                                                          |  |  |  |
| Confidence Score                                                                                                                                                          |                                                                                                                                          |  |  |  |
| Mediating Factors                                                                                                                                                         |                                                                                                                                          |  |  |  |

Г

| Describe ways in which you<br>think climate change may<br>indirectly impact lake<br>function                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Describe changes that you<br>think might occur in the food<br>web due to climate change                                                  |  |
| Are there any exposures that<br>you think might be beneficial<br>to overall lake function? If<br>so, please describe                     |  |
| Please rate vulnerability to non-climatic stressors                                                                                      |  |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change |  |
| Notes                                                                                                                                    |  |

### Table 3A-5. Sample worksheet for at-risk species. **AT-RISK SPECIES WORKSHEET**

| AT-MOK DI ECIED WORKDIEET                                                 |  |
|---------------------------------------------------------------------------|--|
| Taxonomic group                                                           |  |
| Species (common name)                                                     |  |
| SGCN (yes/no)                                                             |  |
| List exposures that you think this species will be negatively impacted by |  |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-------|
|                                                                                                                          | Habitat specificity                      |              |       |
| Sensitivity Factors                                                                                                      | Edge of range                            |              |       |
|                                                                                                                          | Environmental or physiological tolerance |              |       |
|                                                                                                                          | Interspecific or phenological dependence |              |       |
|                                                                                                                          | Mobility                                 |              |       |
|                                                                                                                          | Exotic pathogens or invasive species     |              |       |

| Vulnerability Rating                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Confidence Score                                                                                                                     |  |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       |  |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change |  |
| Notes                                                                                                                                |  |

| Sensitivity Factors                         | Definition (Whitman et al. 2012)                                                                                                                                                                                                                            |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Habitat specificity                         | is restricted to habitats with narrow or well-defined physical or biotic characteristics.                                                                                                                                                                   |
| Edge of range                               | is reaching the southern edge of its range in Maine, whose populations are highly fragmented, and/or occupy habitats highly vulnerable to climate change.                                                                                                   |
| Environmental or<br>physiological tolerance | is restricted to a narrow range of temperature, hydrology, or snow pack conditions, including both edge-of-range species with distributions most likely determined by climate (as opposed to habitat) and specialists with narrow physical niche tolerance. |
| Interspecific or<br>phenological dependence | has high dependencies requiring special environmental cues (e.g., temperature, moisture) or interspecific interactions (e.g., predation, competition, mutualisms) that are likely to be disrupted by climate change.                                        |
| Mobility                                    | has limited capacity for long distance migration or dispersal and/or high sensitivity to landscape matrix barriers (e.g., roads, development).                                                                                                              |
| Exotic pathogens or invasive species        | is sensitive to exotic pathogens or invasive species that may increase or arrive with climate change.                                                                                                                                                       |

Whitman, A., A. Cutko, P. deMaynadier, S. Walker, B. Vickery, S. Stockwell, and R. Houston. 2012. Climate Change and Biodiversity in Maine: Vulnerability of Wildlife and Plant Species of Special Concern in Maine. Manomet Center for Conservation Sciences in collaboration with Maine Beginning with Habitat Climate Change Adaptation Working Group. Report NCI-2012-3. Brunswick, Maine.

Foden, W., Mace, G., Vié, J.-C., Angulo, A., Butchart, S., DeVantier, L., Dublin, H., Gutsche, A., Stuart, S. and Turak, E. 2008. Species susceptibility to climate change impacts. In: J.-C. Vié, C. Hilton-Taylor and S.N. Stuart (eds). *The 2008 Review of The IUCN Red List of Threatened Species*. IUCN Gland, Switzerland. Available online: *cmsdata.iucn.org/downloads/climate\_change\_and\_species.pdf* 

NatureServe. 2011. The NatureServe Climate Change Vulnerability Index (Version 2.1). Available online: http://www.natureserve.org/prodServices/climatechange/ccvi.jsp

Table 3A-6. Sample worksheet for species likely to do better.

| Organisms that are likely to<br>benefit from climate change | Habitat Associations | <b>Confidence</b><br>(low/medium/high) | Reasons why you expect them to do better |
|-------------------------------------------------------------|----------------------|----------------------------------------|------------------------------------------|
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |
|                                                             |                      |                                        |                                          |

# Appendix 3B

Species-level vulnerability assessments

| eaver     |
|-----------|
| 0         |
| , N, P, Q |
| e<br>0    |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-------|
| Sensitivity Factors                                                                                                      | Habitat specificity                      |              |       |
|                                                                                                                          | Edge of range                            |              |       |
|                                                                                                                          | Environmental or physiological tolerance |              |       |
|                                                                                                                          | Interspecific or phenological dependence |              |       |
|                                                                                                                          | Mobility                                 |              |       |
|                                                                                                                          | Exotic pathogens or invasive species     |              |       |

| Vulnerability Rating                                                                                                                 | Not <5%                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | High                                                                                                                                                                   |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | Moderate 10-25%                                                                                                                                                        |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | Habitat Alteration, Sedimentation/Erosion,<br>Inventory Need                                                                                                           |
| Notes                                                                                                                                | Direct take (hunting and trapping)<br>Development<br>Keystone wetland builder<br>Moving to places they haven't been before<br>May mediate some climate-related impacts |

| Taxonomic group                                                           | Fish          |
|---------------------------------------------------------------------------|---------------|
| Species (common name)                                                     | Brook trout   |
| SGCN (yes/no)                                                             | yes           |
| List exposures that you think this species will be negatively impacted by | A, B, C, L, Q |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          | Habitat specificity                      | х            | restricted to coldwater habitat; also has specific hydrologic requirements                                                               |
| Sensitivity Factors                                                                                                      | Edge of range                            |              | found throughout VT (where habitat is appropriate)                                                                                       |
|                                                                                                                          | Environmental or physiological tolerance | х            | thermal tolerance likely to be exceeded; also has hydrologic niche                                                                       |
|                                                                                                                          | Interspecific or phenological dependence |              |                                                                                                                                          |
|                                                                                                                          | Mobility                                 |              | good dispersal capability if no barriers exist                                                                                           |
|                                                                                                                          | Exotic pathogens or invasive species     | Х            | whirling disease, competition with non-natives,<br>genetic alteration (stocked vs. wild), indirect impacts<br>from hemlock wooly adelgid |

| Vulnerability Rating                                                                                                                 | H - Highly vulnerable                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | high                                                                                                                                                                                                                                                                                                                                                                |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | high                                                                                                                                                                                                                                                                                                                                                                |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | A, <b>B</b> , <b>C</b> , E, F, H, I                                                                                                                                                                                                                                                                                                                                 |
| Notes                                                                                                                                | This rating is consistent with results from other states; the<br>single most important factor affecting brook trout distribution<br>and production is water temperature (Creaser 1930; Mullen<br>1958; McCormick et al. 1972); sedimentation can also have<br>major impact (impair feeding ability (sight feeders), can<br>smother eggs and embryos in redds, etc.) |

| Taxonomic group                                                           | Reptiles    |
|---------------------------------------------------------------------------|-------------|
| Species (common name)                                                     | Wood turtle |
| SGCN (yes/no)                                                             | yes         |
| List exposures that you think this species will be negatively impacted by | I, P, Q     |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes                              |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|------------------------------------|
|                                                                                                                          | Habitat specificity                      | х            | 1% stream gradient, tied to stream |
| Sensitivity Factors                                                                                                      | Edge of range                            |              |                                    |
|                                                                                                                          | Environmental or physiological tolerance |              |                                    |
|                                                                                                                          | Interspecific or phenological dependence |              |                                    |
|                                                                                                                          | Mobility                                 | х            | Restricted to stream corridor      |
|                                                                                                                          | Exotic pathogens or invasive species     |              |                                    |

| Vulnerability Rating                                                                                                                 | Moderate                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | High                                                                                                                              |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | Highly vulnerable                                                                                                                 |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | Habitat Alteration, Habitat Fragmentation, Inventory<br>Need                                                                      |
| Notes                                                                                                                                | Road kill, pet trade, mowing, cars, increase in predators<br>60 years longevity, 12 years to reproduction, impacted by<br>leeches |

| Taxonomic group                                                           | Mussel             |
|---------------------------------------------------------------------------|--------------------|
| Species (common name)                                                     | Eastern Pearlshell |
| SGCN (yes/no)                                                             | yes                |
| List exposures that you think this species will be negatively impacted by | C, L, P, Q, W      |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes              |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|--------------------|
|                                                                                                                          | Habitat specificity                      | х            | Cold water habitat |
| tors                                                                                                                     | Edge of range                            |              |                    |
| Sensitivity Fac                                                                                                          | Environmental or physiological tolerance |              |                    |
|                                                                                                                          | Interspecific or phenological dependence | Х            | Brook trout host   |
|                                                                                                                          | Mobility                                 | х            |                    |
|                                                                                                                          | Exotic pathogens or invasive species     |              |                    |

| Vulnerability Rating                                                                                                                 | High                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | Medium                                                                  |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | Moderate                                                                |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | Habitat Alteration, Invasives,<br>Sedimentation/Erosion, Inventory Need |
| Notes                                                                                                                                | Impacted by dams                                                        |

#### **AT-RISK SPECIES WORKSHEET-Uplands**

| Taxonomic group                                                           | Bird                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                     | Bicknell's Thrush                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SGCN (yes/no)                                                             | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| List exposures that you think this species will be negatively impacted by | ABCDE-all temp impacts but A may shift habitat<br>right out of VT. H heavy rainfall could impact<br>nesting. Q droughts could impact food availability.<br>Storms (R) and fire (S) could further impact habitat<br>and nesting. Areas are remote so fire suppression<br>may be limited except on ski areas with their<br>excellent road and trail network. U onset of spring<br>could impact W biological interactions of thrush and<br>prey species (unsure of this) |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes                           |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|---------------------------------|
|                                                                                                                          | Habitat specificity                      | х            | Montane spruce-fir and krumholz |
| Sensitivity Factors                                                                                                      | Edge of range                            | X            | Southern edge                   |
|                                                                                                                          | Environmental or physiological tolerance |              |                                 |
|                                                                                                                          | Interspecific or phenological dependence |              | Could be a factor but unsure    |
|                                                                                                                          | Mobility                                 |              |                                 |
|                                                                                                                          | Exotic pathogens or invasive species     |              |                                 |

| Vulnerability Rating                                                                                                                 | H (25-75%) over 50 years but E (>75%) over long-<br>term                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | H (60+%) This species really appears to be a loser                                                                                                                                                                                            |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | H species already highly vulnerable and has lost ground (Mt Greylock, MA) and Haiti/DR                                                                                                                                                        |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | A acid rain impact spruce. Ski area and mountain top<br>wind development (B/E), destruction and alternation<br>of winter habitat (B/E) red squirrel cone cycle and<br>predation (other), high elevation patches of relative<br>small size (J) |
| Notes                                                                                                                                |                                                                                                                                                                                                                                               |

#### AT-RISK SPECIES WORKSHEET -lake

| Taxonomic group                                                           | Bird                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                     | Bald Eagle                                                                                                                                                                                                            |
| SGCN (yes/no)                                                             | yes                                                                                                                                                                                                                   |
| List exposures that you think this species will be negatively impacted by | Temp impacts unlikely; H heavy rain could impact<br>nesting; R storm blowdown of nest and tree, S fire<br>could also impact nesting; do not believe phenology<br>will impact this scavenger/duck hunting/fishing bird |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------|
| rs                                                                                                                       | Habitat specificity                      | х            | Only that it must nest in large trees with mid<br>canopy flight path to nest. Larger trees may be<br>prone to wind damage. |
| Sensitivity Factor                                                                                                       | Edge of range                            |              |                                                                                                                            |
|                                                                                                                          | Environmental or physiological tolerance |              |                                                                                                                            |
|                                                                                                                          | Interspecific or phenological dependence |              |                                                                                                                            |
|                                                                                                                          | Mobility                                 |              |                                                                                                                            |
|                                                                                                                          | Exotic pathogens or invasive species     |              |                                                                                                                            |

| Vulnerability Rating                                                                                                                 | L does not seem likely that CC will have a big impact, but that may just be because we don't know.                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | М                                                                                                                                                                                                 |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | L (slightly 5-10%) has largely recovered form DDE impacts                                                                                                                                         |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | E encroachment to nest tree, I has a history of DDE eggshell thinning, poisoning in West, and mercury issues in Maine . Note: some shooting occurs, is hit by cars, and sometimes is electrocuted |
| Notes                                                                                                                                |                                                                                                                                                                                                   |

| Taxonomic group                                                           | Semotilus corporalis               |
|---------------------------------------------------------------------------|------------------------------------|
| Species (common name)                                                     | Fallfish                           |
| SGCN (yes/no)                                                             | n                                  |
| List exposures that you think this species will be negatively impacted by | L,p (scouring is most important),q |

| Check box if you think this species will be<br>negatively impacted by climate change due to<br>these sensitivity factors |                                          | Check<br>box | Notes |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-------|
|                                                                                                                          | Habitat specificity                      |              |       |
| Sensitivity Factors                                                                                                      | Edge of range                            |              |       |
|                                                                                                                          | Environmental or physiological tolerance |              |       |
|                                                                                                                          | Interspecific or phenological dependence |              |       |
|                                                                                                                          | Mobility                                 |              |       |
|                                                                                                                          | Exotic pathogens or invasive species     |              |       |

| Vulnerability Rating                                                                                                                 | L -slightly vulnerable                              |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Confidence Score                                                                                                                     | M- moderate                                         |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | L - slightly vulnerable                             |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | <b>B</b> (channelization) ,C (rock snot), j (dams), |
| Notes                                                                                                                                |                                                     |

### AT-RISK SPECIES WORKSHEET-Uplands

| Taxonomic group                                                           | Mammal                                                                                                                                                                                                             |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                     | Lynx/bobcat                                                                                                                                                                                                        |
| SGCN (yes/no)                                                             | Yes-high/yes-medium                                                                                                                                                                                                |
| List exposures that you think this species will be negatively impacted by | A annual temp shifts boreal forest north so bobcat<br>favored. G/J Seasonal snowfall decreases so bobcat<br>favored. W snowshoe hare prey of lynx impacted by<br>lose of snow and boreal cover so lynx loses again |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes                                                                               |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-------------------------------------------------------------------------------------|
| Sensitivity Factors                                                                                                      | Habitat specificity                      | х            | Lynx: boreal/deep snowbobcat more habitat generalist but does need secure den sites |
|                                                                                                                          | Edge of range                            | х            | Lynx at southern edge in VT. Bobcat has a more southern range so will do well       |
|                                                                                                                          | Environmental or physiological tolerance |              |                                                                                     |
|                                                                                                                          | Interspecific or phenological dependence | х            | Lynx has dependency on hare and hare cycle                                          |
|                                                                                                                          | Mobility                                 |              |                                                                                     |
|                                                                                                                          | Exotic pathogens or invasive species     |              |                                                                                     |

| Vulnerability Rating                                                                                                                 | E – likely we will say goodbye to lynx in VT (100% loss)                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     |                                                                                                                                                     |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | Lynx already a very vulnerable species that only has<br>a toe hold in VT that may be ephemeral (H $-$ 25-<br>75%) Could make argument that >75% (E) |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | Trapping in Canada impacts Lynx population. Hare cycle controls lynx pop.                                                                           |
| Notes                                                                                                                                | This species couplet tells a good CC story                                                                                                          |

| Taxonomic group                                                           | Salvelinus namaycush                                                                                                                                     |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                     | Lake Trout                                                                                                                                               |
| SGCN (yes/no)                                                             | n                                                                                                                                                        |
| List exposures that you think this species will be negatively impacted by | A,b,o,n,m (reduction in ice cover would exacerbate<br>seasonal water temperature),q, w (fluctuating primary<br>production - young depend on zooplankton) |

| Check box if you think this species will be<br>negatively impacted by climate change due to<br>these sensitivity factors |                                          | Check<br>box | Notes                                               |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-----------------------------------------------------|
| Sensitivity Factors                                                                                                      | Habitat specificity                      | Х            | Cold water as adults, shoal spawning, edge of range |
|                                                                                                                          | Edge of range                            | Х            | Southern extent of range                            |
|                                                                                                                          | Environmental or physiological tolerance | х            | Low thermal tolerance                               |
|                                                                                                                          | Interspecific or phenological dependence |              |                                                     |
|                                                                                                                          | Mobility                                 |              |                                                     |
|                                                                                                                          | Exotic pathogens or invasive species     |              |                                                     |

| Vulnerability Rating                                                                                                                 | Highly                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | Highly                                                                                     |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | Highly                                                                                     |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | C (alewife), B (artifical connections to other waterways), D, G                            |
| Notes                                                                                                                                | Change of diet to an alewife base reduces<br>reproductive fitness - Sea lamprey parasitism |

#### AT-RISK SPECIES WORKSHEET- Lake

| Taxonomic group                                                           | Bird                                                                                                                                                                                    |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                     | Common Loon                                                                                                                                                                             |
| SGCN (yes/no)                                                             | yes                                                                                                                                                                                     |
| List exposures that you think this species will be negatively impacted by | Temp unlikely to impact; N fluctuating lake levels<br>could flood or strand nests; P flood affects nest,<br>drought affects nest, R storms could impact on<br>migration or when nesting |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                           | Check<br>box | Notes                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|-------------------------------------------------------------------------------------------------|
|                                                                                                                          | Habitat specificity                       | Х            | Must nest at water's edge                                                                       |
| Sensitivity Factors                                                                                                      | Edge of range                             | X            | Possibly but does not seem likely that this northern breeder will be seriously impacted CC      |
|                                                                                                                          | Environmental or physiological tolerance  | х            | More mercury could become available with CC and<br>this might negatively impact loon physiology |
|                                                                                                                          | Interspecific or 11honological dependence |              |                                                                                                 |
|                                                                                                                          | Mobility                                  |              |                                                                                                 |
|                                                                                                                          | Exotic pathogens or invasive species      |              |                                                                                                 |

| Vulnerability Rating                                                                                                                 | M more variable weather and water levels, as well as mercury exposure increased                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | L not sure how food base will be impacted                                                                                                                       |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | L have managed against this stressors                                                                                                                           |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | B change to shoreline habitat and water levels<br>E building and recreating near loon nests<br>I mercury and lead poisoning<br>Direct impacts from fishing gear |
| Notes                                                                                                                                |                                                                                                                                                                 |

### **AT-RISK SPECIES WORKSHEET-Uplands**

| Taxonomic group                                                              | Plant                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                        | Red Oak                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SGCN (yes/no)                                                                | No                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| List exposures that you think this species will<br>be negatively impacted by | BC (heat) does impact oak but not as much as other species<br>in VT so it is likely to gain advantage. I soil moisture also<br>will affect but again relatively less than some other species<br>(guess on my part). Q droughts will impact but this species<br>likely to expand as other species thin out. R storms and S fire<br>will impact but still it will likely gain advantage. Longer<br>growing season may help but invasives Z won't help |

| Check box if you think this species will be<br>negatively impacted by climate change due<br>to these sensitivity factors |                                          | Check<br>box | Notes                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          | Habitat specificity                      |              |                                                                                                                                                                                         |
| Sensitivity Factors                                                                                                      | Edge of range                            | x            | More southern species so favored with CC (at least<br>compared to other VT species that are less tolerant),<br>but will have a lot more company from other oak<br>species and hickories |
|                                                                                                                          | Environmental or physiological tolerance |              |                                                                                                                                                                                         |
|                                                                                                                          | Interspecific or phenological dependence |              |                                                                                                                                                                                         |
|                                                                                                                          | Mobility                                 |              |                                                                                                                                                                                         |
|                                                                                                                          | Exotic pathogens or invasive species     |              | Uncertain but could face more disease issues                                                                                                                                            |

| Vulnerability Rating                                                                                                                 | Ranges from N (Not vulnerable, No Effect) to Increase possible or likely                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | L not confident so please weigh in. Some fringe group<br>named Manomet writes: Red oak and white pine are well-<br>suited for the warmer temperatures and altered precipitation<br>patterns expected under climate change in Maine and are<br>highly valued for forest products. |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | N not vulnerable unless deer pop explodes or oak market skyrockets                                                                                                                                                                                                               |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | Is harvested but doing ok in VT. Habitat loss and alteration (B) is a potential impact and habitat fragmentation (J) but overall probably holding its own . Deer do browse on oak.                                                                                               |
| Notes                                                                                                                                |                                                                                                                                                                                                                                                                                  |

#### **AT-RISK SPECIES WORKSHEET-Upland**

| Taxonomic group                                                           | Plant                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species (common name)                                                     | Sugar Maple                                                                                                                                                                                                                                                                                                                                                            |
| SGCN (yes/no)                                                             |                                                                                                                                                                                                                                                                                                                                                                        |
| List exposures that you think this species will be negatively impacted by | ABCD but mostly BC: Sugar Maple adapted to<br>current climate and will retreat upslope and north<br>with climate changenot tolerant of heat.<br>Q droughts are likely to stress this tree and R storms<br>and S fire may add insult to injury. Phenology may<br>impact with longer growing season (T) that allows<br>southern species to compete (W biol interactions) |

| Cheo<br>nega<br>to th | ck box if you think this species will be<br>atively impacted by climate change due<br>ese sensitivity factors | Check<br>box | Notes                                                                  |
|-----------------------|---------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|
|                       | Habitat specificity                                                                                           |              |                                                                        |
| tors                  | Edge of range                                                                                                 | Х            | Near southern end of range                                             |
| Sensitivity Fac       | Environmental or physiological tolerance                                                                      | x            | Does not tolerate heat well                                            |
|                       | Interspecific or 13honological dependence                                                                     |              | Possible but unsure except for surgaring needing ups and downs in temp |
|                       | Mobility                                                                                                      | Х            | Trees are kind of slow moving                                          |
|                       | Exotic pathogens or invasive species                                                                          |              | possible                                                               |

| Vulnerability Rating                                                                                                                 | M a likely loser but over the next 50 years it will<br>probably not die out. Over generations it may,<br>especially if regeneration is affected                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence Score                                                                                                                     | M while SGP does not know much, literature seems clear that this species is a loser.                                                                                                                                                            |
| Vulnerability to <b>non-climatic</b> stressors                                                                                       | B has probably increased relative to other trees due<br>to value to humans (those largely hairless apes)                                                                                                                                        |
| List non-climatic stressors that<br>affect this species; circle those<br>that you think pose a greater<br>threat than climate change | Managed in sugar bushes but this promotes the<br>species over other trees. Is harvested but done<br>sustainably in VT but this could change. Deer do<br>browse and this can be an issue. Acid rain can<br>impact, as can Asian Longhorn beetle. |

### APPENDIX 3C

Descriptions of Vermont's Natural Community Types

Table 3C-1. Descriptions of natural community types within Vermont's Spruce-Fir-Northern Hardwood Forest Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type                                         | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subalpine Krummholz                                               | S-L           | S1            | Low, dense thickets of balsam fir and black spruce at high elevations. Generally shallow to bedrock.                                                                                                                                                           |
| Montane Spruce-Fir<br>Forest                                      | М             | S3            | Dominated by red spruce and balsam fir, with occasional heartleaf birch, paper birch, and yellow birch. Higher elevations, generally above 2,500 feet.                                                                                                         |
| Variant: Montane Fir<br>Forest                                    | L-M           | S3            | At upper elevations, where balsam fir dominates and height of trees is generally lower.                                                                                                                                                                        |
| Variant: Montane Spruce<br>Forest                                 |               |               | At lower elevations, where balsam fir is nearly absent, trees are taller and hardwoods are more commonly mixed in.                                                                                                                                             |
| Lowland Spruce-Fir<br>Forest                                      | L-M           | S3            | Dominated by red spruce and balsam fir, with occasional white spruce, black spruce, paper birch, and yellow birch. Lowlands of Northeastern Highlands and cold valleys elsewhere.                                                                              |
| Variant: Lowland<br>Spruce-Fir Forest, well<br>drained phase      | L             | S2            | Found on benches, plateaus, shorelines, and glacial outwash. Soils are moderately well drained to excessively drained sands or gravels. White pine can be a late-successional dominant in these areas. Black spruce is generally absent. Fire may play a role. |
| Montane Yellow Birch-<br>Red Spruce Forest                        | М             | S3            | Mixed forest at high elevations (2,200-3,000 feet), dominated by yellow birch and red spruce                                                                                                                                                                   |
| Variant: Montane Yellow<br>Birch-Sugar Maple-Red<br>Spruce Forest | L             | S3            | Found a lower elevations (below 2,500 feet), where sugar maple, red maple, and beech become common in the canopy.                                                                                                                                              |
| Red Spruce-Northern<br>Hardwood Forest                            | М             | S4            | Mixed forest of red spruce, yellow birch, sugar maple, beech, balsam fir, white ash, and other species, not associated with mountain slopes, generally below 2,400 feet elevations, sometimes up to 2,700 feet. A variable community.                          |
| Red Spruce-Heath Rocky<br>Ridge Forest                            | S-L           | S3            | Dry, conifer woodland community dominated by red spruce; occurs on rocky ridgelines, low summits, and exposed ledges in mountainous regions, generally from 1,500 to 2,500 feet elevation.                                                                     |
| Boreal Talus Woodland                                             | S             | S3            | Rockfall slopes dominated by heart-leaved paper birch with occasional red spruce. Appalachian polypody, skunk currant, and mountain maple are often abundant.                                                                                                  |
| Cold-Air Talus<br>Woodland                                        | S             | <b>S</b> 1    | Rare. Found where cold air drains at the bases of large talus areas. Characteristic plants are black spruce, abundant mosses and liverworts, foliose lichens, and Labrador tea                                                                                 |

Table 3C-2. Descriptions of natural community types within Vermont's Northern Hardwood Forest Formation (taken from Thompson and Sorenson 2005).

| Natural Community Type                                                                | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northern Hardwood Forest                                                              | М             | S5            | A variable and widespread community, generally dominated by beech, sugar maple, and yellow birch.                                                                                                                                                                                                       |
| Variant: Beech-Red Maple-<br>Hemlock Northern<br>Hardwood Forest                      | L             | S5            | A mid-successional forest with common canopy components of beech and red maple. Occurs on convex knobs, where soils are well drained to somewhat excessively well drained, on gentle to moderate slopes. Common herbs are starflower, Canada mayflower, shining clubmoss, beech drops, and Indian pipes |
| Variant: Sugar Maple-<br>White Ash-Jack-in-the-<br>pulpit Northern Hardwood<br>Forest | S-L           | S4            | A nutrient enriched variant of Northern Hardwood Forest occurring in a variety of settings, especially concavities in the slope. In addition to typical northern hardwood species, white ash and black cherry are common.                                                                               |
| Variant: Yellow Birch-<br>Northern Hardwood Forest                                    | L             | S5            | Occurs where yellow birch is stable as a canopy dominant, especially in rocky and bouldery sites.                                                                                                                                                                                                       |
| Variant: White Pine-<br>Northern Hardwood Forest                                      | L             | S4            | White pine mixes with northern hardwood forest species. Typically occurs on well drained sites with coarser soils. Presence of white pine may also be related to land use history.                                                                                                                      |
| Rich Northern Hardwood<br>Forest                                                      | S-L           | S4            | High diversity hardwood forests of sugar maple, white ash, and basswood, with excellent productivity and high herb diversity. Maidenhair fern, blue cohosh, and wood nettle are characteristic herbs.                                                                                                   |
| Variant: Northern<br>Hardwood Limestone<br>Forest                                     | S             | S3            | Occurs on shallow-to-bedrock soils, where the bedrock is limestone or other calcium-rich rock such as dolomite. Hophornbeam is typically common.                                                                                                                                                        |
| Mesic Red Oak-Northern<br>Hardwood Forest                                             | L             | S4            | Northern hardwood species and red oak co-dominate. Mostly on south-facing slopes in the northern parts of Vermont and on a variety of slopes and flats in warmer regions of Vermont.                                                                                                                    |
| Hemlock Forest                                                                        | S             | S4            | Dominated by hemlock, often on shallow soils. Generally occurs below 1,800 feet elevation.                                                                                                                                                                                                              |
| Variant: Hemlock-Red<br>Spruce Forest                                                 | S             | S4            | Red spruce is common or co-dominant in the canopy. Typically at sites near the upper elevation range for hemlock.                                                                                                                                                                                       |
| Variant: Temperate<br>Hemlock Forest                                                  | S-L           | S4            | In the warmer regions of Vermont hemlock is the canopy dominant but is mixed with red oak, white oak, and sweet birch. (A community of the Oak-Pine Forest Formation)                                                                                                                                   |
| Hemlock-Northern<br>Hardwood Forest                                                   | L-M           | S4            | A widespread mixed forest of hemlock and northern hardwoods.                                                                                                                                                                                                                                            |
| Variant: Hemlock-White<br>Pine-Northern Hardwood<br>Forest                            | L             | S4            | White pine is an important component of the canopy and is believed to be persistent over time. Occur on coarse outwash soils.                                                                                                                                                                           |
| Variant: Yellow Birch-<br>Hemlock Forest                                              | L             | S4            | Occurs on rocky sites where there are suitable sites for yellow birch to germinate.                                                                                                                                                                                                                     |
| Northern Hardwood Talus<br>Woodland                                                   | S             | S3            | Rockfall slopes dominated by yellow birch, white ash, and paper birch, with mountain maple, Appalachian polypody, red-berried elder.                                                                                                                                                                    |

| Natural Community Type                                      | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Red Pine Forest or<br>Woodland                              | S             | S2            | Maintained by fire, these small areas are dominated by red pine, have very shallow soils, and have blueberries and huckleberries in the understory. They are widespread and often surrounded by Northern Hardwood Forests.                                                                                                                                   |
| Pitch Pine-Oak-Heath<br>Rocky Summit                        | S             | S1            | Fire-adapted communities on dry, acidic ridgetops where red oak, white oak, pitch pine, scrub oak, and white pine are characteristic trees. Heath shrubs are abundant.                                                                                                                                                                                       |
| Limestone Bluff Cedar-Pine<br>Forest                        | S             | S2            | Northern white cedar dominates these areas of shallow soils over calcareous bedrock. Red pine, white pine, hemlock, and hardwoods are also present. Characteristic herbs are ebony sedge and rock polypody.                                                                                                                                                  |
| Red Cedar Woodland                                          | S             | S2            | Open glade-like communities on dry ledge crests, where red cedar is native and persistent, and grasses and sedges dominate the ground layer.                                                                                                                                                                                                                 |
| Dry Oak Woodland                                            | S             | S2            | Very open areas with trees of low stature on dry, south facing hilltops and slopes. Grasses and woodland sedge are dominant on the forest floor.                                                                                                                                                                                                             |
| Dry Oak Forest                                              | S             | S3            | Occur on rocky hilltops with very shallow, infertile soils. Red oak, chestnut oak, and white oak can all be present; usually other tree species are absent. Heath shrubs dominate the understory.                                                                                                                                                            |
| Dry Oak-Hickory-<br>Hophornbeam Forest                      | S-L           | S3            | Occur on till-derived soils, but are often found on hilltops, and bedrock exposures are common. Soils are well drained but are more fertile than in Dry Oak Forests. Red oak, sugar maple, hophornbeam and shagbark hickory are variously dominant. Sometimes sugar maple is the dominant tree, sometimes it is oak and hickory. Woodland sedge forms lawns. |
| Variant: Sugar Maple-<br>Hophornbeam Forest                 | S             | S3            | In cooler climates than standard Dry Oak-Hickory-Hophornbeam Forest, sugar maple and hophornbeam dominate the canopy and oak and hickory may be absent.                                                                                                                                                                                                      |
| Mesic Maple-Ash-Hickory-<br>Oak Forest                      | L             | S3            | Found in warmer regions of Vermont, sugar maple, white ash, hickories, and red and white oak are present in varying abundances. Soils are drier than in Northern Hardwood Forests.                                                                                                                                                                           |
| Variant: Transition<br>Hardwoods Limestone<br>Forest        | S             | S3            | Also found in warmer climate areas, but where bedrock is calcareous and is close to the surface; this bedrock is expressed in the vegetation. Distinguished from the Rich Northern Hardwood Forest by the dominance of warm-climate species such as shagbark hickory and oak.                                                                                |
| Mesic Clayplain Forest                                      | L-M           | S2            | Found in the Vergennes clay soils of the Champlain Valley, this forest is variously dominated by red maple, red oak, white oak, hemlock, and shagbark hickory, with bur oak, swamp white oak, white ash, and hophornbeam also common. Soils are poorly drained.                                                                                              |
| Sand-Over-Clay Forest                                       | L             | S2            | Found in the Champlain Valley on a number of soils where there is a sand layer over clay. Typical species include hemlock, red maple, red oak, big-tooth aspen, beech, sweet birch, white oak, and witch hazel.                                                                                                                                              |
| White Pine-Red Oak-Black<br>Oak Forest                      | L             | S3            | Found on coarse-textured soils. Red and black oak co-dominate along with white pine. Beech and hemlock are also common. Heath shrubs are common in the understory.                                                                                                                                                                                           |
| Pine-Oak-Heath Sandplain<br>Forest                          | L             | S1            | Rare, found on dry sandy soils in warmer areas, especially Chittenden County. Characteristic species are white pine, pitch pine, black oak, and red oak with an understory dominated by heath shrubs.                                                                                                                                                        |
| Transition Hardwood Talus<br>Woodland                       | S             | S3            | Found on rockfall slopes in warmer areas, often on limestone but occasionally on slate, schist, granite, gneiss, or other rock. Some characteristic species are red oak, basswood, white ash, sweet birch, bitternut hickory, northern white cedar, hackberry, bulblet fern, and Canada yew.                                                                 |
| Variant: Transition<br>Hardwood Limestone Talus<br>Woodland | S             | S3            | Found on limestone, dolomite, or marble rockfall slopes and characterized by the calciphilic species such as shagbark hickory, bladdernut, bulblet fern, herb robert, and many other herbs. Northern white cedar is often abundant.                                                                                                                          |

Table 3C-3. Descriptions of natural community types within Vermont's Oak-Pine Forest Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type    | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                                     |
|------------------------------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dwarf Shrub Bog              | S             | S2            | Bogs are open, acid peatlands dominated by heath shrubs and sphagnum moss. Scattered, stunted black spruce and tamarack trees cover less than 25 percent of the ground. Found in cold climate areas. Deep sphagnum peat is permanently saturated.                                                               |
| Black Spruce Woodland<br>Bog | S             | S2            | Stunted black spruce trees cover 25-60 percent of the ground over heath shrubs and sphagnum moss. Found in cold climate areas. Peat is deep and dominated by remains of sphagnum moss.                                                                                                                          |
| Pitch Pine Woodland<br>Bog   | S             | <b>S</b> 1    | Pitch pine forms an open canopy (25-60 percent) over rhodora, heath shrubs, and sphagnum moss. Known only from Maquam Bog and the mouth of the Missisquoi River.                                                                                                                                                |
| Alpine Peatland              | S             | <b>S</b> 1    | Found only on the highest peaks of the Green Mountains (above 3,500 feet). Has characteristics of both bog and poor fen, but is distinguished by its high elevation and presence of alpine bilberry, black crowberry, Bigelow's sedge, and deer-hair sedge. Peat is shallow over bedrock.                       |
| Poor Fen                     | S             | S2            | Open, acid peatlands dominated by sphagnum mosses, sedges, and heath shrubs. There is some mineral enrichment of surface waters in the hollows, as indicated by the presence of bog bean, mud sedge, white beakrush, and hairy-fruited sedge. Peat is deep and made up of sphagnum moss and sedge remains.      |
| Intermediate Fen             | S             | S2            | Open, slightly acid to neutral peatlands dominated by tall sedges, non-sphagnum mosses, and a sparse to moderate cover of shrubs. Hairy-fruited sedge is typically dominant and water sedge, twig rush, bog-bean and sweet gale are characteristic. The peat is deep, saturated, and composed of sedge remains. |
| Rich Fen                     | S             | S2            | Similar to Intermediate Fen but typically have shallower sedge peat and more mineral-enriched surface waters. Yellow sedge and inland sedge typically dominant. A gentle slope of the peatland may be evident. Sedges and non-sphagnum mosses dominate.                                                         |

Table 3C-4. Descriptions of natural community types within Vermont's Open Peatlands Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type                  | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                      |
|--------------------------------------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Red Maple-Black Ash<br>Seepage Swamp       | S-L           | S4            | A seepage swamp with red maple and/or black ash dominant, with an abundance of shrubs and herbs associated with ground water seepage. Soils are saturated but typically do not experience long periods of flooding. Occurs throughout the state.                                                 |
| Red Maple-Sphagnum<br>Acidic Basin Swamp   | S             | S3            | A basin swamp with small surface watershed and dominated by red maple, yellow birch, hemlock, white pine, tall shrubs, and sphagnum moss. Organic soils are typically very deep and permanently saturated.                                                                                       |
| Red or Silver Maple-<br>Green Ash Swamp    | L             | 83            | Swamps of red or silver maple and green ash that are found primarily in the Champlain Valley<br>and are associated with the lake or large rivers. They experience extended periods of spring<br>flooding and typically have shallow organic soils.                                               |
| Calcareous Red Maple-<br>Tamarack Swamp    | S             | S2            | A rare seepage swamp found in areas of calcareous bedrock. Groundwater seepage is evident at their margins. Red maple, tamarack, black ash, and hemlock may all be present along with many species characteristic of Rich Fens.                                                                  |
| Red Maple-Black Gum<br>Swamp               | S             | S2            | A rare basin swamp. Dominated by red maple, black gum, and hemlock. Restricted to the southeastern part of Vermont. Highbush blueberry, cinnamon fern, and sphagnum moss are common. Typically occur in isolated depressions with deep organic soil accumulations.                               |
| Red Maple-Northern<br>White Cedar Swamp    | L             | S3            | An uncommon seepage swamp. Occurs primarily in the Champlain Valley (in particular along Otter Creek) but also in other areas with calcareous bedrock. Northern white cedar is a consistent component of the canopy along with many shrub and herb species associated with ground water seepage. |
| Wet Clayplain Forest                       | S             | S2            | Rare. The wet clay soils are poorly drained. Found as small to medium-sized inclusions with the Mesic Clayplain Forest. The canopy is dominated by swamp white oak, red maple, bur oak, black ash, green ash, and white ash.                                                                     |
| Wet Sand-Over-Clay<br>Forest               | S             | S2            | Rare. Seasonally wet layers of sand overlay clay in these Champlain Valley forests of hemlock, red maple, yellow birch, swamp white oak, and white pine. Tall shrubs, cinnamon fern, and sedges are common.                                                                                      |
| Red Maple-White Pine-<br>Huckleberry Swamp | S             | <b>S</b> 1    | Rare. Only found in the center of large wetland complexes in the Champlain Valley. Dense, low huckleberry shrubs form a nearly complete cover over sphagnum moss. Soils are deep, permanently saturated woody mucks. Flooding is unlikely.                                                       |

Table 3C-6. Descriptions of natural community types within Vermont's Softwood Swamps Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type                                  | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northern White Cedar<br>Swamp                              | S             | S3            | A seepage swamp most commonly found in areas of calcareous bedrock in the northern half of Vermont. Soils are permanently saturated and are typically deep and organic. Dominated by northern white cedar. Balsam fir and black ash may be abundant. Stair-step moss and shaggy moss are characteristic. |
| Variant: Northern White<br>Cedar Sloping Seepage<br>Forest | S             | 83            | Occurs on a gentle slope and has shallow, highly decomposed muck soils. Groundwater seeps are often evident.                                                                                                                                                                                             |
| Variant: Boreal Acidic<br>Northern White Cedar<br>Swamp    | S             | S3            | A basin swamp which has moderately decomposed organic soils, well-developed hummocks and hollows, and generally more acid surface waters. Sphagnum moss is dominant on the swamp forest floor.                                                                                                           |
| Variant: Hemlock-<br>Northern White Cedar<br>Swamp         | S             | S3            | A seepage swamp near the southern range limit of northern white cedar in Vermont, hemlock may be a co-dominant in the canopy.                                                                                                                                                                            |
| Spruce-Fir-Tamarack<br>Swamp                               | L             | S3            | Red spruce, black spruce, balsam fir, or tamarack vary in their dominance of this cold climate community. Tall shrubs are abundant, especially mountain-holly and wild raisin. Sphagnum moss covers the hummocky ground. Saturated organic soils are shallow.                                            |
| Red Spruce-Cinnamon<br>Fern Swamp                          | S             | \$3           | Red spruce is dominant but red maple and balsam fir may be abundant. Other trees include yellow birch, paper birch, and white pine. Cinnamon fern is abundant over the sphagnum-dominated hummocks and hollows. Organic soils of various depths are present.                                             |
| Black Spruce Swamp                                         | S             | S2            | A basin swamp with dense canopy of black spruce and a ground cover of sphagnum moss,<br>Schreber's moss, three-seeded sedge, goldthread, and creeping snowberry characterize the<br>vegetation of this cold climate community. The saturated soils are relatively deep and the water<br>very acidic.     |
| Hemlock-Sphagnum<br>Acidic Basin Swamp                     | S             | S2            | A rare basin swamp of warmer climate regions, dominated by hemlock, with some red spruce, red maple, and yellow birch. Cinnamon fern, boreal herbs, and sphagnum moss cover the forest floor.                                                                                                            |
| Hemlock-Balsam Fir-<br>Black Ash Seepage<br>Swamp          | S             | S3            | A seepage swamp dominated by hemlock and/or balsam fir, with black ash and yellow birch.<br>Tall shrubs are abundant and there is a diversity of herbaceous species associated with ground<br>water seepage, including water avens, golden saxifrage, and delicate-stemmed sedge.                        |

Table 3C-7. Descriptions of natural community types within Vermont's Marshes and Sedge Meadows Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                                               |
|---------------------------|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shallow Emergent Marsh    | S             | S4            | A variable marsh type with mineral or shallow organic soils that are moist to saturated and only seasonally inundated. Species that may be abundant include bluejoint grass, reed canary grass, rice cutgrass, bulrushes, and Joe-pye weed. Commonly associated with old beaver impoundments or other successional areas. |
| Sedge Meadow              | S             | S4            | These open wetlands are permanently saturated and seasonally flooded. Soils are typically shallow organic muck, although mineral soils may be present in some wetlands. Tussock sedge is dominant in many meadows, but beaked sedge, bladder sedge or bristly sedge may also dominate.                                    |
| Cattail Marsh             | S-L           | S4            | Dominated by common cattail or narrow-leaved cattail. Muck or mineral soils are typically inundated with shallow standing water throughout the year, although the substrate may be exposed in dry years.                                                                                                                  |
| Deep Broadleaf Marsh      | S             | S4            | Water depth typically over one foot deep for most of the year, although some marshes may have only saturated soils in dry summers. Soils are organic.                                                                                                                                                                     |
| Wild Rice Marsh           | S             | S3            | Dominated by wild rice, with an organic soil substrate that is inundated with one to two feet of water throughout the summer.                                                                                                                                                                                             |
| Deep Bulrush Marsh        | S-L           | S4            | Open water along shores of lakes and ponds. Water depths can range from one to six feet. Most of these marshes are dominated by soft-stem bulrush and hard-stem bulrush.                                                                                                                                                  |

Table 3C-8. Descriptions of natural community types within Vermont's Shrub Swamps Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type          | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                    |
|------------------------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alluvial Shrub Swamp               | L             | S3            | Shrub swamp with mineral, alluvial soils found in the floodplains of small rivers. Speckled alder is dominant, but black willow trees are abundant at some sites.                                                                              |
| Alder Swamp                        | L             | <b>S</b> 5    | Speckled alder is typically dominant or at least present in these common swamps found throughout Vermont. They have organic or organic-rich mineral soils that remain saturated for much of the year.                                          |
| Sweet Gale Shoreline<br>Swamp      | S             | S3            | Found on peaty shores of small ponds and along the edges of slowly moving streams. Substrate is a mat of sedgy peat and roots, commonly floating in shallow water. Other species include meadow-sweet and leatherleaf.                         |
| Buttonbush Swamp                   | S             | S2            | Dominated by buttonbush occurring either adjacent to large lakes as part of deep marsh wetland complexes or in isolated depressions. The organic soils are saturated throughout the year and typically flooded in the spring and early summer. |
| Variant: Buttonbush<br>Basin Swamp | S             | S2            | Known only from isolated basins in the southern part of the state. Most known examples occur in kettle hole depressions in glacial outwash, especially in southeastern Vermont.                                                                |
Table 3C-9. Descriptions of natural community types within Vermont's Floodplain Forests Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type                                    | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                     |
|--------------------------------------------------------------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silver Maple-Ostrich<br>Fern Riverine Floodplain<br>Forest   | L             | S3            | Found in the floodplains of moderate-gradient rivers. Silver maple and ostrich fern are the dominant species and the soils are typically well drained sandy alluvium.                                                                           |
| Northern Conifer<br>Floodplain Forest                        | S             | S2            | Occurs primarily in the northeastern portion of Vermont. Seasonally flooded forest type along high gradient streams is typically dominated by balsam fir, red spruce, balsam poplar, and red maple, which form an open canopy.                  |
| Silver Maple-Sensitive<br>Fern Riverine Floodplain<br>Forest | L             | S3            | Occurs in the floodplains of large, low-gradient rivers or back water areas of higher-gradient rivers. Silver maple is the dominant tree, but green ash and swamp white oak may be present. Soils are moist, typically mottled, silty alluvium. |
| Sugar Maple-Ostrich<br>Fern Riverine Floodplain<br>Forest    | S             | S2            | Uncommon. Occurs along small to moderate sized, high-gradient rivers in areas of calcium-rich bedrock. Soils are well-drained, sandy alluvium and flooding is short duration.                                                                   |
| Lakeside Floodplain<br>Forest                                | S             | S3            | Occurs primarily within the flooding zone of Lake Champlain. Silver maple and green ash are the dominant trees. Surface organic layers are present in the moist silty soils and there are mottles near the surface.                             |

Table 3C-10. Descriptions of natural community types within Vermont's Upland Shores Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type       | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                            |
|---------------------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acidic Riverside Outcrop        | S             | S3            | Acidic bedrock exposures along rivers and streams, where flooding and ice scour combine with summer drought to keep trees and shrubs from becoming established. Vegetation is very sparse, with plants growing in small patches of soil that accumulate in cracks      |
| Calcareous Riverside<br>Outcrop | S             | S2            | Calcareous bedrock exposures along rivers and streams, where flooding and ice scour combine with summer drought to keep trees and shrubs from becoming established. Vegetation is very sparse, with plants growing in small patches of soil that accumulate in cracks. |
| Erosional River Bluff           | S             | S2            | Steep, eroding areas of sand, gravel, clay, or silt, on riverbends where natural movement causes continued sloughing of sediments.                                                                                                                                     |
| Lake Shale or Cobble<br>Beach   | S             | S3            | Lake beaches made of coarse fragments such as shale or cobble. Kept open by spring flooding, ice scour, and wave action. Moisture is not abundant during the growing season.                                                                                           |
| Lake Sand Beach                 | S             | S2            | Beaches made from finer soil fragments (sand). Kept open by spring flooding, ice scour, wave action, wind, and regular deposition of new sediments                                                                                                                     |
| Sand Dune                       | S             | S1            | Areas of sand movement due to wind. Vegetation is sparse.                                                                                                                                                                                                              |

Table 3C-11. Descriptions of natural community types within Vermont's Outcrops and Upland Meadows Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type       | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alpine Meadow                   | S             | <b>S</b> 1    | Open areas on Vermont's highest peaks, generally above 3,500 feet in elevation, where cold temperatures and high winds favor a community of plants that can tolerate those conditions. Characteristic species are Bigelow's sedge, alpine bilberry, highland rush, mountain sandwort, and stunted individuals of black spruce and balsam fir. |
| Boreal Outcrop                  | S             | S4            | Found at elevations generally above 1,800 feet but below 3,500 feet. Can experience cold temperatures and high winds, but conditions are not extreme. Scattered trees include red spruce, balsam fir, American mountain-ash, and paper birch                                                                                                  |
| Serpentine Outcrop              | S             | S1            | The chemical composition of the serpentine bedrock favors a specialized but low-diversity, community, including common juniper, harebell, hairgrass, Green Mountain maidenhair fern, and Aleutian maidenhair fern.                                                                                                                            |
| Temperate Acidic<br>Outcrop     | S             | S4            | At lower elevations (generally below 1,800 feet), support communities of low species diversity, characterized by plants that are well adapted to nutrient poor conditions.                                                                                                                                                                    |
| Temperate Calcareous<br>Outcrop | S             | S3            | At lower elevations (generally below 1,800 feet), outcrops are composed of limestone, marble, dolomite, or calcium-bearing quartzite. Scattered trees include northern white cedar, eastern red cedar, yellow oak, and shagbark hickory.                                                                                                      |

Table 3C-12. Descriptions of natural community types within Vermont's Cliffs and Talus Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type     | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                           |
|-------------------------------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boreal Acidic Cliff           | S             | S4            | Cliffs of cold regions or high elevation, generally above 2000 feet, found on acidic bedrock.                                                                                                         |
| Boreal Calcareous Cliff       | S             | S2            | Cliffs of cold regions or high elevation, generally above 2000 feet, where calcareous bedrock combined with seepage creates a habitat that favors certain calciphilic plants, some of which are rare. |
| Temperate Acidic Cliff        | S             | S4            | Cliffs of warmer, lower elevations, generally below 2,000 feet, found on acidic bedrock.                                                                                                              |
| Temperate Calcareous<br>Cliff | S             | S3            | Cliffs of warmer, lower elevations, generally below 2000 feet, on limestone, marble, dolomite, or calcareous quartzite.                                                                               |
| Open Talus                    | S             | S2            | Areas of open rockfall, usually occurring below cliffs. Sparsely vegetated.                                                                                                                           |
| Variant: Shale Talus          | S             | S2            | Talus made from smaller, flatter rock fragments. Less stable.                                                                                                                                         |

Table 3C-13. Descriptions of natural community types within Vermont's Seeps and Vernal Pools Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type | Patch<br>Size | State<br>Rank | Description                                                                                                                                                                                                      |
|---------------------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seep                      | S             | S4            | Common but small community occurring on slopes or at the bases of slopes in upland forests.<br>Groundwater discharge is evident at the seep margin. Golden saxifrage and rough-stemmed sedge are characteristic. |
| Vernal Pool               | S             | S3            | Small depressions in forests that fill with water in the spring and fall. Provide breeding habitat for many salamanders and frogs. Typically shaded by the adjacent forest.                                      |

Table 3C-14. Descriptions of natural community types within Vermont's Wet Shores Formation (taken from Thompson and Sorenson 2005).

| Natural Community<br>Type     | Patch<br>Size | State<br>Rank | Description                                                                                                                                        |
|-------------------------------|---------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Outwash Plain Pondshore       | S             | S1            | Rare. Found only in southeastern Vermont on the sloping seasonally exposed shorelines of ponds with substantial annual water level fluctuations.   |
| River Mud Shore               | S             | S3            | Found along slow-moving rivers. Exposed during low flow periods of summer. Sparsely vegetated.                                                     |
| River Sand or Gravel<br>Shore | S             | S3            | Found along moderate gradient rivers. Shifting sand and gravel substrate is sparsely vegetated.                                                    |
| River Cobble Shore            | S             | S2            | Rare. Occurs along high energy rivers and streams. The cobble substrate is unstable and sparsely vegetated.                                        |
| Calcareous Riverside<br>Seep  | S             | S1            | Rare. Occurs on exposed bedrock along rivers and streams where there is seepage of calcareous groundwater. Kept open by flooding and ice scouring. |
| Rivershore Grassland          | S             | S3            | Found in sheltered shorelines of moderate to high gradient rivers. Substrate is a mix of cobble, gravel, and fines.                                |
| Lakeshore Grassland           | S             | S2            | Occurs on the gently sloping shorelines of gravel, cobble, and shale of Lake Champlain. Kept open by wave and ice scouring and annual flooding.    |

## APPENDIX 3D

Rivers Classification Scheme (Biological-Geomorphological)

| Class                         | Geomorph broad class | Geomorph Description                                                                                                                                                                                         | Bio Subclass                                                                 | Bio Description                                                                                                                            |  |  |
|-------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| High gradient                 | Source/headwaters    | Steep, mountain headwater streams<br>flowing through non-alluvial, coarse<br>sediment (bedrock,boulders, cobbles);<br>high woody debris input; spring<br>influence; little lateral movement or<br>floodplain | Small High Gradient<br>Streams (SHG)                                         | small headwater acidic & non-acidic (bugs);<br>small, high elevation, cold headwater fish or<br>no fish (fish)                             |  |  |
| Moderate gradient<br>(>1-3 %) | Transfer             | Moderate slopes; boulders, cobbles,<br>coarse gravel, some bedrock stretches;<br>banks more naturally resistant to<br>erosion                                                                                | Medium-sized High<br>Gradient Streams (MHG)                                  | moderately-sized high elevation coldwater<br>streams; moderately-sized streams or small<br>rivers, mid-elevation, mixed cold-warm<br>water |  |  |
|                               | Response             | Moderate to low slopes; alluvial<br>sediments (cobbles, gravels);<br>floodplain features and moderate<br>lateral meander expression                                                                          | Warm Water Moderate<br>Gradient (WWMG)                                       | small-large rivers, cool-warm water                                                                                                        |  |  |
|                               |                      | Very low slopes; fine alluvial sediments (fine gravel, sand, silt);                                                                                                                                          | Small Cold- water Low<br>gradient                                            | small-moderate, higher elevation, cold-cool<br>headwater fish or no fish (fish)                                                            |  |  |
| Low gradient (<1%)            | Response             | highly sinuous with lateral meander<br>expression; characterized by broad<br>floodplain features; beaver dam<br>influence common, particularly in                                                            | Medium-sized mid-reach<br>cool meandering streams                            | moderately-sized mid-low elevation cool<br>streams; moderately-sized streams or small<br>rivers, mid-elevation                             |  |  |
|                               |                      | smaller streams; may include streams<br>that flow directly into lakes                                                                                                                                        | Med to Large rivers below<br>"fall line" directly entering<br>lake champlain | moderate to large, warmwater rivers in large<br>valleys                                                                                    |  |  |

Table 3D-1. Broad geomorphic and biological descriptions of the stream classes.

Table 3D-2. Physical characteristics of the stream classes.

| Class                                                        | Habitat                                 | Size                                                    | Elevation                                                                                                                         | Thermal<br>Regime | Substrate                                                                                                  | Groundwater<br>influence/spring<br>fed         | Canopy<br>cover              | Sinuosity | Woody<br>Debris<br>input |
|--------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------|-----------|--------------------------|
| High<br>gradient                                             | plunge-<br>pool?                        | average 10<br>km2; 1-3rd<br>order                       | high (>1500) will<br>almost always be<br>cold, but cold, can be<br>lower if ground water<br>influenced/northern<br>aspect/ravined | coldwater         | coarse<br>(gravel/cobble/bo<br>ulder); low %<br>fines (avg 3%)                                             | strong especially<br>as elevation<br>decreases | high<br>usually<br>>90%      | very low  | high                     |
| Moderate<br>gradient                                         | step-pool,<br>plane bed,<br>riffle-pool | average 88<br>km2; 3-4th<br>order                       | moderate (average<br>814 ft)                                                                                                      | cold, cool?       | cobble, gravel;<br>low % fines<br>sand, silt (avg<br>6%); (note: the<br>bug class has<br>boulders as well) | varies?                                        | open (avg<br>30% cover)      | moderate  | moderate                 |
| Moderate<br>gradient<br>(>1-3 %)                             | riffle-pool                             | large valley<br>streams (avg<br>480 km2; 4-<br>6 order) | low                                                                                                                               | warmwater         | gravel/cobble                                                                                              | low                                            | open (avg<br>30% cover)      | moderate  | ? (source?)              |
| Low                                                          | dune ripple                             | small                                                   | high (>1500) will<br>almost always be<br>cold, but cold, can be<br>lower if ground water<br>influenced/northern<br>aspect/ravined | cold, cool        | sand/silt                                                                                                  | high                                           | closed -<br>shreb<br>grasses | high      | high                     |
| gradient<br>(<1%)                                            | dune ripple                             | medium to<br>large                                      | mid                                                                                                                               | warmwater         | sand/silt                                                                                                  | varies?                                        | partly                       | high      | moderate                 |
| Moderate<br>gradient<br>(>1-3 %)<br>Low<br>gradient<br>(<1%) | dune ripple                             | small to<br>large                                       | low                                                                                                                               | cool, warm        | sand/silt                                                                                                  | low                                            | open                         | high      | moderate                 |

Table 3D-3. Geomorphic characteristics of the stream classes.

| Class                 | Rosgen Stream<br>Class | Sediment Regime<br>(reference)                                                                         | Valley Type                            | Floodplain Type                                                       | Lateral<br>Bedrock<br>Controls                                                     | Vertical<br>Bedrock<br>Controls      |
|-----------------------|------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|
| High gradient         | A, B                   | Sediments enter<br>through colluvial<br>processes                                                      | Confined                               | Limited or no<br>floodplain features                                  | Common                                                                             | Common                               |
| Moderate gradient     | B, Bc, Cb, F           | Transport; sediment<br>coming in from<br>upstream balanced by<br>sediment exported                     | Varies, but typically confined valleys | Limited or occasional floodplain features                             | Common to<br>Occasional                                                            | Common to<br>Occasional              |
|                       | C, Cb, Eb              | Coarse Equilibrium<br>(In=Out); storage<br>through floodplain<br>features and high<br>frequency floods | Unconfined (narrow<br>to broad)        | Floodplain and terrace<br>including active and<br>historical features | Occasional, but<br>usually only on<br>one side of<br>channel for short<br>distance | Occasional but<br>not characteristic |
|                       | Е                      | Coarse Equilibrium<br>(In=Out); storage                                                                |                                        |                                                                       |                                                                                    |                                      |
| Low gradient<br>(<1%) | Е                      | through floodplain<br>features and high<br>frequency floods;<br>some areas may be                      | Unconfined (broad<br>or very broad)    | Floodplain and terrace<br>including active and<br>historical features | Uncommon                                                                           | Uncommon                             |
|                       | E, D                   | more depositional,<br>especially at deltas or<br>above dams                                            |                                        |                                                                       |                                                                                    |                                      |

| Class              | Sediment Regime Departure                                                                                                                                                                                                                                                                | Water Quality Conditions                                                                                                  | Biotic assemblage                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High gradient      | Confined Source and transport:<br>Materials are eroded and transported<br>downstream at an accelerated<br>rate/volume; landslides commonly<br>triggered along narrow valley side<br>slopes with increased mobilization of<br>woody debris; limited or no storage<br>of material in reach | Dissloved Oxygen high, pH usually<br><7, alkalinity low, conductivity<br>usually low, Chloride <2mg/l,<br>nutrients low   | Bugs:Ephemeroptera (Rithrogenia sp, Eurylophella sp) Plecoptera<br>(Peltoperla, Malirekus,Taenionema, Chloroperlidae, Leuctridae);<br>Trichoptera (Palegapus sp,Ceratopsyche ventura, Parapsyche sp,<br>Arctopsyche sp), Coleoptera (Oulimnious sp.) and Diptera (Eukiefferella<br>brevicalar grp); Fish non or brook trout only, or brook trout and slimy<br>sculpin, brook trout and blacknose dace; Mussels - none; water shrews<br>(require intact riparian area & connectivity) |  |  |  |
| Moderate gradient  | Confined Source and transport:<br>Materials are eroded and transported<br>downstream at an accelerated<br>rate/volume; landslides may be<br>triggered along narrow valley side<br>slopes; limited or no storage of<br>material in reach;                                                 | Dissloved Oxygen high, pH usually<br>>7, alkalinity moderate, conductivity<br>moderate, Chloride <2mg/l, nutrients<br>low | Brachycentrus sp; Lepidostoma sp.; Apatania sp.; Symphitopsyche<br>slossonae;Polycentropus sp.; Promoresia tardella; Optioservous sp.;<br>Eukiefferella brehni, Polypedilum aviceps; Epeorus; Rhithrogena,Agnetina<br>sp.; Isogenoides,Bluntnose minnow, Creek Chub, Brown Trout, Blacknose<br>Dace                                                                                                                                                                                  |  |  |  |
| (>1-3 %)           | Unconfined Source and transport:<br>Loss of floodplain access; some<br>erosion of bed and banks; most<br>material is transported downstream<br>rather than deposited due to<br>increased power of stream; OR Fine<br>source and transport w/coarse<br>deposition: Fine materials ar      | D.O moderate, pH usually >8,<br>alaklinity high.                                                                          | Bugs: Plecoptera (Neoperla); Trichoptera(Chimara spp ) ; Coleoptera<br>(Stenelmis sp Promeresia elegans, Dubiraphia sp); Ephemeroptera<br>(Isonychia ); Diptera (Polypedilum convictum); fish: bluntnose minnow-<br>creek chub; pumpkinseed-bluntnose minnow; Mussels potentially all but<br>depends on geographic location as to which species may occur                                                                                                                            |  |  |  |
|                    | Unconfined Source and transport:<br>Loss of floodplain access; some<br>erosion of bed and banks: most                                                                                                                                                                                    | D.O. high                                                                                                                 | Pisidium sp., Polycentropus sp., Litobrancha sp., Cordulegaster sp, Brook<br>Trout, Longnose sucker,Redfin pickeral                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Low gradient (<1%) | material is transported downstream<br>rather than deposited due to<br>increased power of stream; OR Fine<br>source and transport w/coarse                                                                                                                                                | DO Moderate                                                                                                               | Bugs: Bivalvia (Pisidium); Amphipoda: Hyallela; Odonata: Cordulagaster;<br>Coleoptera: Dubiraphia; Trichoptera: Lype; Diptera: Polypedilum, Brown<br>Trout,black and longnose dace, white sucker and creek chub.<br>Common shiner                                                                                                                                                                                                                                                    |  |  |  |
|                    | deposition: Fine materials are<br>leaving the reach; coarser materials<br>(trees, boulders, cobbles, etc.) are<br>being deposited                                                                                                                                                        | DO, moderate-lower                                                                                                        | Potamilus alatus; Lampsilis ovata; Leptodea fragilus; Pyganodon<br>grandis;Hexagenia limbata; Sphaerium spp.; Pisidium henslowanum;<br>Dubiraphia;Phylocentropus; Gammarus sp.; Polypedilum halterale;<br>Spheromias and Culicoides,Pumpkinseed- Bluntnose Minnow,Redhorse-<br>Lamprey                                                                                                                                                                                               |  |  |  |

Table 3D-4. Descriptions of the sediment regime, water quality and biotic assemblage in each stream class.

## APPENDIX 3E

NETHM 2010 Regional Classification Scheme for Terrestrial Habitats, Limited to VT Habitats Only

Table 3E-1. List of regional terrestrial habitat systems found in VT.

| NETHM<br>Formation             | NETHM<br>Macrogroup               | NETHM Habitat System                                          | NE Scale    | VT | NY | СТ | MA | RI | NH | ME | ELCODE     | ESLF |
|--------------------------------|-----------------------------------|---------------------------------------------------------------|-------------|----|----|----|----|----|----|----|------------|------|
|                                | Central Appalachian<br>Peatland   | North-Central Appalachian Seepage<br>Fen                      | Small patch | X  | X  | X  | Х  |    |    |    | CES202.607 | 9232 |
| Peatland                       |                                   | Boreal-Laurentian Bog                                         | Large patch | Х  | Х  |    |    |    |    | Х  | CES103.581 | 9354 |
|                                | Northern Dectloy d                | Boreal-Laurentian-Acadian Acidic<br>Basin Fen                 | Large patch | X  | X  |    | X  |    | Х  | X  | CES201.583 | 9353 |
|                                | Normern Peatiand                  | Laurentian-Acadian Alkaline Fen                               | Small patch | Х  | Х  |    | Х  |    | Х  | Х  | CES201.585 | 9198 |
|                                |                                   | North-Central Interior and<br>Appalachian Acidic Peatland     | Small patch | Х  | X  | X  | Х  | X  | Х  | Х  | CES202.606 | 9193 |
|                                | Central Hardwood<br>Swamp         | North-Central Interior Wet Flatwoods                          | Small patch | Х  | X  | X  | Х  |    |    |    | CES202.700 | 9186 |
|                                |                                   | Central Appalachian River Floodplain                          | Large patch | Х  | Х  | Х  | Х  |    | Х  |    | CES202.608 | 9333 |
|                                | Northeastern<br>Eloodplain Forest | Central Appalachian Stream and Riparian                       | Linear      | Х  | X  | X  | Х  |    | Х  |    | CES202.609 | 9331 |
|                                | Floodplain Forest                 | Laurentian-Acadian Floodplain<br>Systems                      | Linear      | X  | X  |    | X  |    | Х  | X  | CES201.631 | 9144 |
| Northeastern<br>Wetland Forest | Northern Swamp                    | Acadian-Appalachian Conifer<br>Seepage Forest                 | Large patch | X  | X  |    |    |    | X  | X  | CES201.576 | 9344 |
| wettand Porest                 |                                   | Laurentian-Acadian Alkaline Conifer-<br>Hardwood Swamp        | Large patch | X  | X  | X  |    | ?  |    | X  | CES201.575 | 9345 |
|                                |                                   | North-Central Appalachian Acidic<br>Swamp                     | Large patch | X  | X  | X  | X  | X  | X  |    | CES202.604 | 9307 |
|                                |                                   | North-Central Interior and<br>Appalachian Rich Swamp          | Small patch | X  | X  | X  | X  | X  |    |    | CES202.605 | 9306 |
|                                |                                   | Northern Appalachian-Acadian<br>Conifer-Hardwood Acidic Swamp | Large patch | X  | X  | X  | X  |    | Х  | X  | CES201.574 | 9346 |
|                                |                                   | Central Appalachian Dry Oak-Pine<br>Forest                    | Matrix      | X  | X  | X  | X  | X  | Х  | X  | CES202.591 | 4312 |
|                                | Central Oak-Pine                  | Central Appalachian Pine-Oak Rocky<br>Woodland                | Large patch | Х  | X  | X  | Х  |    | Х  | Х  | CES202.600 | 4320 |
|                                |                                   | Northeastern Interior Pine Barrens                            | Large patch | Х  | Х  | Х  | Х  | Х  | Х  | Х  | CES202.590 | 4257 |
| Northeastern                   |                                   | Appalachian (Hemlock)-Northern<br>Hardwood Forest             | Matrix      | X  | X  | X  | Х  |    | Х  | Х  | CES202.593 | 4313 |
|                                | Northern Hardwood &               | Laurentian-Acadian Northern<br>Hardwoods Forest               | Matrix      | X  | X  |    | X  |    | X  | X  | CES201.564 | 4108 |
|                                | Conifer                           | Laurentian-Acadian Northern Pine-<br>(Oak) Forest             | Large patch | X  | X  |    |    |    | X  | X  | CES201.719 | 4265 |
|                                |                                   | Laurentian-Acadian Pine-Hemlock-<br>Hardwood Forest           | Matrix      | X  | X  |    |    | X  | X  | X  | CES201.563 | 4308 |

| Table 3E-1. co              | ontinued                         |                                                               |             |    |    |    |    |    |    |    |            |      |
|-----------------------------|----------------------------------|---------------------------------------------------------------|-------------|----|----|----|----|----|----|----|------------|------|
| NETHM<br>Formation          | NETHM<br>Macrogroup              | NETHM Habitat System                                          | NE Scale    | VT | NY | СТ | MA | RI | NH | ME | ELCODE     | ESLF |
|                             | Lake & River Shore               | Laurentian-Acadian Lakeshore<br>Beach                         | Small patch | X  | X  |    | ?  | ?  | Х  | Х  | CES201.586 | 3182 |
| Grassland &<br>Shrubland    | Outcrop & Summit                 | Laurentian-Acadian Calcareous<br>Rocky Outcrop                | Small patch | X  | X  |    |    |    | Х  | Х  | CES201.572 | 5461 |
|                             | Scrub                            | Northern Appalachian-Acadian<br>Rocky Heath Outcrop           | Small patch | X  | X  |    | Х  | ?  | Х  | Х  | CES201.571 | 5462 |
|                             | Coastal Plain Pond               | Northern Atlantic Coastal Plain<br>Pond                       | Small patch | X  | X  |    | Х  |    |    | Х  | CES203.518 | 9283 |
| Freshwater<br>Marsh         | Emergent Marsh                   | Laurentian-Acadian Freshwater<br>Marsh                        | Large patch | X  | X  | X  | Х  | Х  | Х  | Х  | CES201.594 | 9405 |
|                             | Wet Meadow / Shrub<br>Marsh      | Laurentian-Acadian Wet Meadow-<br>Shrub Swamp                 | Large patch | X  | X  | X  | X  | Х  | Х  | Х  | CES201.582 | 9406 |
| Coastal Scrub-<br>Herb      | Coastal Grassland &<br>Shrubland | Great Lakes Dune                                              | Small patch | X  | X  |    |    |    |    |    | CES201.026 | 3137 |
|                             | Cliff and Talus                  | Laurentian-Acadian Acidic Cliff<br>and Talus                  | Small patch | X  | X  |    | Х  |    | Х  | Х  | CES201.569 | 3188 |
|                             |                                  | Laurentian-Acadian Calcareous<br>Cliff and Talus              | Small patch | X  | X  |    |    |    | Х  | Х  | CES201.570 | 3144 |
| Cliff & Rock                |                                  | North-Central Appalachian Acidic<br>Cliff and Talus           | Small patch | X  | X  | X  | X  |    |    |    | CES202.601 | 3154 |
|                             |                                  | North-Central Appalachian<br>Circumneutral Cliff and Talus    | Small patch | X  | X  |    | X  |    | Х  |    | CES202.603 | 3153 |
|                             |                                  | Northeastern Erosional Bluff                                  | Linear      | Х  | Х  | ?  | Х  |    | Х  | Х  | CES203.498 | 3114 |
| Boreal<br>Wetland<br>Forest | Boreal Forested<br>Peatland      | Boreal-Laurentian Conifer Acidic<br>Swamp                     | Large patch | X  | х  |    |    |    | Х  | Х  | CES103.724 | 9177 |
|                             |                                  | Acadian Low-Elevation Spruce-<br>Fir Forest and Flats         | Matrix      | X  | X  |    |    |    | Х  | Х  | CES201.565 | 4316 |
| Boreal Upland<br>Forest     | Boreal Upland Forest             | Acadian Sub-Boreal Spruce<br>Barrens                          | Large patch | X  |    |    |    |    | Х  | Х  | CES201.561 | 9133 |
|                             |                                  | Acadian-Appalachian Montane<br>Spruce-Fir Forest              | Large patch | X  | X  |    | Х  |    | Х  | Х  | CES201.566 | 4317 |
| Alpino                      | Alpino                           | Acadian-Appalachian Alpine<br>Tundra                          | Large patch | X  | X  |    |    |    | X  | Х  | CES201.567 | 5210 |
| Alpine                      | Alpine                           | Acadian-Appalachian Subalpine<br>Woodland and Heath-Krummholz | Large patch | X  | X  |    |    |    | X  | X  | CES201.568 | 5320 |

# APPENDIX 3F

Upland Forest –Spruce-Fir worksheet completed at the July 9, 2012 workshop

#### **Projections (range = low to high emissions scenario)** Trend Code Parameter by 2050, projected increase 3.7 to 5.8°F; by 2100, 5.0 to 9.5°F Α Annual temperature increase Temperature by 2050, projected increase in winter (DJF) 4.3 to 6.1°F; Seasonal В increase summer (JJA) 3.8 to 6.4°F temperature more frequent and more intense; by end of century, northern С # Hot days more cities can expect 30-60+ days of temperatures >90°F # Cold days fewer reduction in days with cold ( $<0^{\circ}$ F) temperatures D Е greater variability (more ups and downs) Variability increase by end of century, projected total increase of 10% (about 4 F Annual precipitation increase inches per year) more winter rain, less snow; by 2050, winter precipitation could Seasonal G variable increase by 11 to 16% on average; little change expected in precipitation summer, but projections are highly variable Heavy rainfall Η increase more frequent and intense events reduction in soil moisture and increase in evaporation rates in Soil moisture decrease Ι the summer Hydrology fewer days with snow cover (by end of century could lose 1/4 J Snow decrease to 1/2+ of snow-covered days; increased snow density earlier snowmelt, earlier high spring flows; could occur 10 days earlier Κ Spring flows to >2 weeks earlier extended summer low-flow periods; could increase by nearly a Summer low flows L longer month under high emissions scenario less ice cover, reduced ice thickness Μ Ice dynamics changing Fluctuating lake Ν increase greater variability, greater amount of change in lake levels levels Lake stratification some lakes may stratify earlier 0 more likely, particularly in winter and particularly under the Р Flood events increase **Extreme events** high emissions scenario # of short-term by end of century, under high emissions scenario, short terms increase Q droughts could occur as much as once per year in some places droughts R Storms increase more frequent and intense (ice, wind, etc.) S Fire more likely Т Growing season longer by end of century, projected to be 4 to 6 weeks longer Phenology by end of century, could be 1 to almost 3 weeks earlier U earlier Onset of spring V Onset of fall later by end of century, could arrive 2 to 3 weeks later Biological W could potentially be disrupted interactions

### EXPOSURES/KEY CLIMATE CHANGE FACTORS

Add ins:

**X** – changing light conditions

Y – spring runoff - reduced volume

Table 3F-1. Key climate factors that are expected to negatively impact VT's spruce-fir forests are marked with X's; the X's in bold, larger text denote those that are expected to have the greatest negative impact.

| Key Climatic<br>Factors | Parameter                       | Trend    | Subalpine<br>Krummholz | Montane<br>Spruce-<br>Fir<br>Forest | Red<br>Spruce-<br>Heath<br>Rocky<br>Ridge<br>Forest | Montane<br>Yellow<br>Birch-<br>Red<br>Spruce<br>Forest | Red<br>Spruce-<br>Northern<br>Hardwood<br>Forest | Lowland<br>Spruce-<br>Fir<br>Forest | Boreal<br>Talus<br>Woodlan<br>d | Cold-Air<br>Talus<br>Woodlan<br>d | Notes                              |
|-------------------------|---------------------------------|----------|------------------------|-------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-------------------------------------|---------------------------------|-----------------------------------|------------------------------------|
|                         | Annual temperature              | increase | X                      | X                                   | X                                                   | X                                                      | х                                                | X                                   | X                               | х                                 |                                    |
| ure                     | Seasonal temperature            | increase | X                      | х                                   | X                                                   | х                                                      | X                                                | X                                   | X                               | X                                 | extreme summer temperature         |
| perat                   | # Extremely hot days<br>(>90°F) | more     | X                      | X                                   | X                                                   | x                                                      | X                                                | X                                   | X                               | X                                 |                                    |
| Tem                     | # Cold days (below freezing)    | fewer    |                        |                                     |                                                     |                                                        |                                                  |                                     |                                 |                                   | pests                              |
|                         | Variability                     | increase | х                      | X                                   | x                                                   | X                                                      | x                                                | х                                   | x                               | x                                 |                                    |
|                         | Annual precipitation            | increase | *                      | *                                   | *                                                   | *                                                      | *                                                | *                                   | *                               | *                                 |                                    |
| <b>3</b> 87             | Seasonal precipitation          | variable |                        |                                     |                                                     |                                                        |                                                  |                                     |                                 |                                   | summer precip=very important       |
| lrole                   | Heavy rainfall events           | increase |                        |                                     |                                                     |                                                        |                                                  |                                     |                                 |                                   | soil depth                         |
| Hyc                     | Soil moisture                   | decrease | х                      | x                                   | Х                                                   | X                                                      | х                                                | X                                   | x                               | х                                 |                                    |
|                         | Snow                            | decrease | Х                      | х                                   | Х                                                   | х                                                      | Х                                                | х                                   | х                               | х                                 | lack of snow                       |
| nts                     | Flood events                    | increase |                        |                                     |                                                     |                                                        |                                                  |                                     |                                 |                                   |                                    |
| eve                     | # of short-term droughts        | increase | х                      | х                                   | Х                                                   | х                                                      | х                                                | х                                   | х                               | х                                 |                                    |
| reme                    | Storms                          | increase |                        | х                                   | Х                                                   | х                                                      | х                                                | Х                                   | х                               | х                                 |                                    |
| Extr                    | Fire                            |          |                        |                                     | X                                                   |                                                        |                                                  |                                     | х                               | х                                 |                                    |
|                         | Growing season                  | longer   |                        |                                     |                                                     |                                                        |                                                  |                                     |                                 | Х                                 |                                    |
| lology                  | Onset of spring                 | earlier  | х                      | х                                   | Х                                                   | х                                                      | х                                                | х                                   | х                               | х                                 | early thaw, then frost - kill buds |
| Pher                    | Onset of fall                   | later    |                        |                                     |                                                     |                                                        |                                                  |                                     |                                 |                                   | later frost                        |
| Ι                       | Biological interactions         |          | x**                    | x**                                 |                                                     |                                                        |                                                  |                                     |                                 | х                                 |                                    |

| Questions                                                                         | Subalpine<br>Krummholz                                                                        | Montane Spruce-<br>Fir Forest                                                                                      | Red Spruce-<br>Heath Rocky<br>Ridge Forest  | Montane<br>Yellow Birch-<br>Red Spruce<br>Forest | Red Spruce-<br>Northern<br>Hardwood<br>Forest | Lowland<br>Spruce-Fir<br>Forest             | Boreal<br>Talus<br>Woodland                 | Cold-Air Talus<br>Woodland               |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|
| List the exposures<br>that you think will<br>have the greatest<br>negative impact | soil moisture,<br>thermal                                                                     | thermal (esp<br>BWA), soil<br>moisture                                                                             | thermal,<br>soil<br>moisture,<br>fire       | thermal, soil<br>moisture                        | thermal, soil<br>moisture                     | thermal,<br>soil<br>moisture                | thermal,<br>soil<br>moisture                | thermal, soil<br>moisture                |
| List the exposures<br>that you think might<br>be beneficial                       | increase in annual precip                                                                     | increase in annual precip                                                                                          | increase in<br>annual<br>precip             | increase in annual precip                        | increase in<br>annual<br>precip               | increase in<br>annual<br>precip             | increase in<br>annual<br>precip             | increase in<br>annual precip             |
| Composition<br>changes?                                                           | less spruce and<br>fir, area<br>compressed,<br>weather<br>extreme<br>prevent other<br>species | less spruce and<br>fir, more<br>hardwood;<br>increase paper<br>birch and<br>hobblebush,<br>reduced yellow<br>birch | less spruce<br>and fir,<br>more<br>hardwood | less spruce<br>and fir, more<br>hardwood         | less spruce<br>and fir,<br>more<br>hardwood   | less spruce<br>and fir,<br>more<br>hardwood | less spruce<br>and fir,<br>more<br>hardwood | less spruce<br>and fir, more<br>hardwood |
| Vulnerability Rating                                                              | 4-H 6-M 1-L                                                                                   | 1-H 7-M 2-L                                                                                                        | 1-H 8-M                                     | 8-M 1-L                                          | 7-M 4-L                                       | 8-M 3-L                                     | 1-H 6-M<br>2-L                              | 3-H 6-M                                  |
| Confidence Score                                                                  | 4-H 5-M 2-L                                                                                   | 3-H 5-M 2-L                                                                                                        | 1-Н 7-М 3-<br>L                             | 1-H 7-M 3-L                                      | 1-Н 7-М 3-<br>L                               | 3-H 6-M 2-<br>L                             | 8-M 2-L                                     | 1-H 6-M 2-L                              |

Table 3F-2. Vulnerability and confidence scores for the natural community types found within the spruce-fir formation.

## APPENDIX 3G

Upland Forest – Literature

The following resources related to **forests** were compiled through desktop research and consultations. The list is not intended to be exhaustive and is continually being updated as new information becomes available.

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. Retrieved from www.lanl.gov/source/orgs/ees/ees14/pdfs/09/AllenMcDowell09.pdf

Amiro, B. D., Stocks, B. J., Alexander, M. E., Flannigan, M. D. and Wotton, B. M. (2001). Fire, climate change, carbon and fuel management in the Canadian boreal forest. International Journal of Wildland Fire, 10, 405–413.

Anderegg, W.R.L, Kane, J.M. and L.D.L. Anderegg. 2012. Tree mortality associated with temperature and drought stress. Nature Climate Change. Advance online publication. Available from: http://wrlanderegg.com/wp-content/uploads/2011/11/Andereggetal2012 NatureClimChange ConsequencesForestDieOff.pdf

Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L. and C.B. Field. 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences 109(1): 233-237. Available from: http://www.pnas.org/content/109/1/233.full.pdf+html

Beckage, B., Osborne, B., Gavin, D. G., Pucko, C., Siccama, T. G. and Perkins, T. (2008). A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences, 105(11), 4197-4202. Retrieved from http://www.pnas.org/content/105/11/4197.full.pdf+html

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444-1449 Retrieved from http://www.sciencemag.org/content/320/5882/1444.abstract

CCSP, 2008: *Preliminary review of adaptation options for climate-sensitive ecosystems and resources.* A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Julius, S.H., J.M. West (eds.), J.S. Baron, B. Griffith, L.A. Joyce, P. Kareiva, B.D. Keller, M.A. Palmer, C.H. Peterson, and J.M. Scott (Authors)]. U.S. Environmental Protection Agency, Washington, DC, USA, 873 pp.

Gonzalez, P., R. P. Neilson, J. M. Lenihan, and R. J. Drapek. 2010. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography 19:755–768. Available from www.fsl.orst.edu/dgvm/gonzalez\_2010.pdf.

Gunn, J. S., Hagan, J. M. and Whitman, A. A. (2009). Forestry Adaptation and Mitigation in a Changing Climate: A forest resource manager's guide for the northeastern United States. (Manomet Center for Conservation Sciences Report NCI-2009-1, pp. 16). Brunswick, Maine: Manomet Center for Conservation Sciences. Available from http://www.manomet.org/science-applications/docs/forestry-adaptation-and-mitigation-changing-climate-forest-resource-manage

Huntington, T. G., Richardson, A. D., McGuire, K. J. and Hayhoe, K. (2009). Climate and hydrological changes in the northeastern United States: recent trends and implications for forested and aquatic ecosystems. Canadian Journal of Forest Research, 39, 199-212.

Iverson, L., Prasad, A. and Matthews, S. (2008). Potential Changes in Suitable Habitat for 134 Tree Species in the Northeastern United States. Mitigation and Adaptation Strategies for Global Change(13), 517-540. Retrieved from http://treesearch.fs.fed.us/pubs/15295

Johnston, M. (2009). Vulnerability of Canada's Tree Species to Climate Change and Management Options for Adaptation: An Overview for Policy Makers and Practitioners. (pp. 44) Canadian Council of Forest Ministers. Available from www.ccfm.org/pdf/TreeSpecies\_web\_e.pdf

Kliejunas, John T. 2011. A risk assessment of climate change and the impact of forest diseases on forest ecosystems in the Western United States and Canada. Gen. Tech. Rep. PSW-GTR-236. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 70 p. Available from http://www.fs.fed.us/psw/publications/documents/psw\_gtr236/.

Kunkel, K.E., H.-C. Huang, X.-Z. Liang, J.-T. Lin, D. Wuebbles, Z. Tao, A. Williams, M. Caughey, J. Zhu, and K. Hayhoe. 2007. Sensitivity of future ozone concentrations in the Northeast U.S. to regional climate change. Northeast United States Climate Impact Assessment (NECIA).

Lowe, W. H., Nislow, K. H. and Likens, G. E. (2005). Forest structure and stream salamander diets: Implications for terrestrial-aquatic connectivity. Proceedings of the International Association of Theoretical and Applied Limnology, 29, 279 – 286. Retrieved from dbs.umt.edu/research\_labs/lowelab/.../Lowe\_et\_al\_2005\_VIVL.pdf

Logan, J.A., Régnière, J. and J.A. Powell. 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 1(3): 130-137. Available from http://www.usu.edu/beetle/documents/Loganet.al.2003.pdf

Millar, C. I., N. L. Stephenson, and S. L. Stephens. 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications 17:2145–2151. Available from www.fs.fed.us/psw/publications/.../psw 2007 millar029.pdf

Nislow, K. H. (2005). Forest change and stream fish habitat: lessons from 'Olde' and New England. Journal of Fish Biology, 67, 186-204. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.0022-1112.2005.00913.x/abstract

North East State Foresters Association. (2007). The Economic Importance and Wood Flows from Vermont's Forests, 2007. (pp. 8). Available from http://www.vtfpr.org/includes/documents/ecimportfor.pdf

Peterson DL, Millar CI, Joyce LA, Furniss MJ, Halofsky JE, Neilson RP, and Morelli TL. 2011. Responding to climate change in national forests: a guidebook for developing adaptation options. General Technical Report PNW-GTR-855. Portland OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

Prasad, A. M., Iverson, L. R., Matthews, S. and Peters, M. (2007-ongoing). A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States [database]. Delaware, OH: Northern Research Station, USDA Forest Service. Available from http://www.nrs.fs.fed.us/atlas/tree

Robledo, C. and Forner, C. (2005). Forests and Climate Change Working Paper 2 - Adaptation of forest ecosystems and the forest sector to climate change. Food and Agriculture Organization of the United

Nations Swiss Agency for Development and Cooperation. Available from http://www.intercooperation.ch/offers/download/AdaptationOfForestEcosystems.pdf/view

Rodenhouse, N. L., Christenson, L. M., Parry, D. and Green, L. E. (2009). Climate change effects on native fauna of Northeastern forests. Canadian Journal of Forestry Research, 39, 249-263. Retrieved from www.esf.edu/efb/parry/pubs/Rodenhouse etal 2009.pdf

Rustad, L. E. and Cox, R. M. (2009). NE Forests 2100: A Synthesis of Climate Change Impacts on Forests of the Northeastern US and Eastern Canada. Canadian Journal of Forest Research, 39(2), iii-iv. doi: 10.1139/x09-900

Rustad, L., Campbell, J., Dukes, J.S., Huntington, T., Lambert, K.F., Mohan, J., Rodenhouse, N. 2012. Changing Climate, Changing Forests: The Impacts of Climate Change on Forests of the Northeastern United States and Eastern Canada. US Forest Service, Northern Research Station, General Technical Report NRS-99. Available from: http://nrs.fs.fed.us/pubs/41165

Swanston, C., Janowiak, M., Iverson, L., Parker, L., Mladenoff, D., Brandt, L., Butler, P., St. Pierre, M., Prasad, A., Matthews, S., Peters, M., Higgins, D. and A. Dorland. 2011. Ecosystem Vulnerability Assessment and Synthesis: A Report from the Climate Change Response Framework Project in Northern Wisconsin. US Forest Service, Northern Research Station, General Technical Report NRS-82. Available from: http://www.nrs.fs.fed.us/pubs/gtr/gtr\_nrs87.pdf

USDA Forest Service Eastern Forest Environmental Threat Assessment Center and North Carolina State University Department of Forestry and Environmental Resources. (2012). The FORECASTS project - forecasts of climate-associated shifts in tree species. NC State University. Available from http://www.geobabble.org/~hnw/global/treeranges3/climate change/atlas.html

USDA Forest Service Northern Research Station. (2012). Climate Change Atlas. Available from http://www.nrs.fs.fed.us/atlas/

Vermont Department of Forests Parks and Recreation. (2006). Acceptable management practices for maintaining water quality on logging jobs in Vermont.

Vermont Department of Forests, P. R. (2010). Vermont Forest Resources Plan and State Assessment & Resource Strategies. Available from http://www.vtfpr.org/htm/for\_resourcesplan.cfm

Wilkerson, E., and Whitman, A. 2011. Climate change & forests: what can we expect? What can we do about it? Available from <u>http://www.manomet.org/climate-change-publications</u>

Williams, A.P., C.D. Allen, A.K. Macalady, D. Griffin, C.A. Woodhouse, D.M. Meko, T.W. Swetnam, S.A. Rauscher, R. Seager, H.D. Grissino-Mayer, J.S. Dean, E.R. Cook, C. Gangodagamage, M. Cai, and N.G. McDowell. INPRESS. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change : 6. Available online: http://www.fort.usgs.gov/Products/Publications/pub\_abstract.asp?PubID=23511

Wilmot, S. (2011). Climate Change and Vermont's Forests. Available from www.anr.state.vt.us/anr/climatechange/Pubs/VTCCAdaptForestry.pdf

Wilmot, S. (2012). Sugar Maple Phenology. Available from http://www.vtfpr.org/protection/documents/Timingofsugarmapleleafdevelopment pictures.pdf Wisconsin Forestry Working Group. (2011). Forestry Working Group Report. (pp. 75) Wisconsin Working Initiative on Climate Change Impacts. Available from www.wicci.wisc.edu/report/Forestry.pdf

Woodall, C. W., Oswalt, C. M., Westfall, J. A., Perry, C. H., Nelson, M. D. and Finley, A. O. (2009). An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257, 1434-1444. Retrieved from www.treesearch.fs.fed.us/pubs/19546

Zhu, K., Woodall, C. W. and Clark, J. S. (2012). Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 18(3), 1042-1052. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02571.x/abstract

## APPENDIX 3H

Wetlands worksheets (most of these were completed during a follow-up exercise by Fish & Wildlife)

#### **Projections (range = low to high emissions scenario)** Trend Code Parameter by 2050, projected increase 3.7 to 5.8°F; by 2100, 5.0 to 9.5°F Α Annual temperature increase Temperature by 2050, projected increase in winter (DJF) 4.3 to 6.1°F; Seasonal В increase summer (JJA) 3.8 to 6.4°F temperature more frequent and more intense; by end of century, northern С # Hot days more cities can expect 30-60+ days of temperatures >90°F # Cold days fewer reduction in days with cold ( $<0^{\circ}$ F) temperatures D Е greater variability (more ups and downs) Variability increase by end of century, projected total increase of 10% (about 4 F Annual precipitation increase inches per year) more winter rain, less snow; by 2050, winter precipitation could Seasonal G variable increase by 11 to 16% on average; little change expected in precipitation summer, but projections are highly variable Heavy rainfall Η increase more frequent and intense events reduction in soil moisture and increase in evaporation rates in Soil moisture decrease Ι the summer Hydrology fewer days with snow cover (by end of century could lose 1/4 J Snow decrease to 1/2+ of snow-covered days; increased snow density earlier snowmelt, earlier high spring flows; could occur 10 days earlier Κ Spring flows to >2 weeks earlier extended summer low-flow periods; could increase by nearly a Summer low flows L longer month under high emissions scenario less ice cover, reduced ice thickness Μ Ice dynamics changing Fluctuating lake Ν increase greater variability, greater amount of change in lake levels levels Lake stratification some lakes may stratify earlier 0 more likely, particularly in winter and particularly under the Р Flood events increase **Extreme events** high emissions scenario # of short-term by end of century, under high emissions scenario, short terms increase Q droughts could occur as much as once per year in some places droughts R Storms increase more frequent and intense (ice, wind, etc.) S Fire more likely Т Growing season longer by end of century, projected to be 4 to 6 weeks longer Phenology by end of century, could be 1 to almost 3 weeks earlier U earlier Onset of spring V Onset of fall later by end of century, could arrive 2 to 3 weeks later Biological W could potentially be disrupted interactions

### EXPOSURES/KEY CLIMATE CHANGE FACTORS

Add ins:

**X** – changing light conditions

Y – spring runoff - reduced volume

| Climate<br>Factor | Parameter                          | Trend    | Basin<br>Swamps<br>and<br>Wetlands | Ground<br>Water<br>Seepage<br>and<br>Flooded<br>Swamps | Open<br>Peatlands<br>(groundwater<br>fed) | Open<br>Peatlands<br>(precipitation-<br>dependent) | Notes                        |
|-------------------|------------------------------------|----------|------------------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------|
|                   | Annual temperature                 | increase |                                    |                                                        |                                           | Х                                                  |                              |
| Temperature       | Seasonal<br>temperature            | increase | Х                                  | X                                                      | Х                                         | х                                                  |                              |
|                   | # Extremely<br>hot days<br>(>90°F) | more     |                                    |                                                        | Х                                         | Х                                                  |                              |
|                   | # Cold days<br>(below<br>freezing) | fewer    | х                                  | Х                                                      |                                           |                                                    |                              |
|                   | Variability                        | increase |                                    |                                                        |                                           | Х                                                  |                              |
|                   | Annual precipitation               | increase |                                    |                                                        |                                           |                                                    |                              |
|                   | Seasonal precipitation             | variable | Х                                  | х                                                      | X                                         | Х                                                  | summer precip=very important |
| 0gy               | Heavy rainfall events              | increase | Х                                  |                                                        |                                           |                                                    |                              |
| [ydrolc           | Soil moisture                      | decrease | X                                  | Х                                                      | X                                         | X                                                  |                              |
|                   | Snow                               | decrease |                                    |                                                        |                                           | Х                                                  |                              |
| Ħ                 | Spring flows                       | earlier  | Х                                  | Х                                                      |                                           |                                                    |                              |
|                   | Summer low<br>flows                | longer   | X                                  | X                                                      |                                           |                                                    |                              |
|                   | Fluctuating water levels           | increase |                                    |                                                        | X                                         |                                                    |                              |

Table 3H-1. Key climate factors that are expected to negatively impact VT's wetland formations are marked with X's; the X's in bold, larger text denote those that are expected to have the greatest negative impact.

| Table | e. Co | ontinu  | ied. |   |  |
|-------|-------|---------|------|---|--|
| 1 uon |       | 1101110 | icu. | ٠ |  |

| Climate<br>Factor        | Parameter                   | Trend    | Basin<br>Swamps<br>and<br>Wetlands | Ground<br>Water<br>Seepage<br>and<br>Flooded<br>Swamps | Open<br>Peatlands<br>(groundwater<br>fed) | Open<br>Peatlands<br>(precipitation-<br>dependent) | Notes       |
|--------------------------|-----------------------------|----------|------------------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------|
|                          | Flood events                | increase |                                    |                                                        |                                           |                                                    |             |
| <b>Extreme</b><br>events | # of short-term<br>droughts | increase | X                                  | X                                                      | X                                         | Х                                                  |             |
|                          | Storms                      | increase | Х                                  | Х                                                      |                                           | Х                                                  |             |
| [                        | Fire                        |          |                                    |                                                        |                                           | х                                                  |             |
| Phenology                | Growing season              | longer   | Х                                  | Х                                                      |                                           |                                                    |             |
|                          | Onset of spring             | earlier  |                                    |                                                        |                                           |                                                    |             |
|                          | Onset of fall               | later    |                                    |                                                        |                                           |                                                    |             |
|                          | Biological interactions     |          | Х                                  | х                                                      | х                                         | х                                                  | pollinators |

## Basin Swamps and Wetlands – PAGE 1

| List e:<br>codes                                                                                                                                                       | xposures that you think<br>from the exposures list | will have direct, negative impacts on this type of wetland (we encourage you to use<br>but free text is ok as well)                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| tors                                                                                                                                                                   | Thermal                                            | B, D                                                                                                                                                                          |  |  |  |  |
| nge Fact                                                                                                                                                               | Hydrologic                                         | G (summer drought), H (potentially mitigated by fall leaves), I, K                                                                                                            |  |  |  |  |
| nate Cha                                                                                                                                                               | Extreme<br>events/disturbance                      | Q, R                                                                                                                                                                          |  |  |  |  |
| y Clin                                                                                                                                                                 | Phenology                                          | T, W                                                                                                                                                                          |  |  |  |  |
| Key                                                                                                                                                                    | Other                                              | Invasives                                                                                                                                                                     |  |  |  |  |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why |                                                    | Susceptible to changes in volume and seasonality of precipitation and show<br>melt<br>Summer low flows and periods of summer drought<br>Reason: leading to peat decomposition |  |  |  |  |
| Vulnerability Rating                                                                                                                                                   |                                                    | Moderate (10-25%)                                                                                                                                                             |  |  |  |  |
| Confidence Score                                                                                                                                                       |                                                    | Medium                                                                                                                                                                        |  |  |  |  |
| Sensitivity Factors                                                                                                                                                    |                                                    |                                                                                                                                                                               |  |  |  |  |

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>wetland                                                 | Stress to assemblages<br>Changes to composition of assemblages (biological interactions)<br>Increases in summer drought may impact peat |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Are there any exposures that<br>you think might be beneficial<br>to this type of wetland? If so,<br>please describe                                 |                                                                                                                                         |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              | Slightly vulnerable (5-10%)                                                                                                             |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | Habitat alteration/altered hydrology<br>Pest - Woolly adelgid                                                                           |
| List species associated with<br>this type of wetland that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why | Hemlock<br>Black spruce (edge of range)                                                                                                 |
| List species associated with<br>this type of wetland that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 | Red maple (generalist – wider tolerance)<br>Black gum (edge of range)                                                                   |

### **Basin Swamps and Wetlands – PAGE 3**

| Natural Community Type                 | Patch<br>Size | S<br>rank |
|----------------------------------------|---------------|-----------|
| Red Maple-Sphagnum Acidic Basin Swamp  | S             | S3        |
| Spruce-Fir-Tamarack Swamp              | L             | S3        |
| Red Spruce-Cinnamon Fern Swamp         | S             | S3        |
| Black Spruce Swamp                     | S             | S2        |
| Hemlock-Sphagnum Acidic Basin Swamp    | S             | S2        |
| Red Maple-Black Gum Swamp              | S             | S2        |
| Red Maple-White Pine-Huckleberry Swamp | S             | S1        |
| Vernal Pool                            | S             | S3        |

Basin Swamps and Wetlands encompass the following natural community types:

| List ex<br>codes                                                                                                                                                       | xposures that you think<br>from the exposures list | will have direct, negative impacts on this type of wetland (we encourage you to use<br>but free text is ok as well) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| tors                                                                                                                                                                   | Thermal                                            | B, D                                                                                                                |
| nge Fact                                                                                                                                                               | Hydrologic                                         | G, I, K, L                                                                                                          |
| ate Cha                                                                                                                                                                | Extreme<br>events/disturbance                      | Q, R                                                                                                                |
| <i>v</i> Clin                                                                                                                                                          | Phenology                                          | T, W                                                                                                                |
| Key                                                                                                                                                                    | Other                                              | Invasives (pests/disease) - ash borer                                                                               |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why |                                                    | Seasonal temperature<br>Summer low flows                                                                            |
| Vulnerability Rating                                                                                                                                                   |                                                    | Slightly (5-10% loss)                                                                                               |
| Confidence Score                                                                                                                                                       |                                                    | Medium                                                                                                              |
| Sensitivity Factors                                                                                                                                                    |                                                    | Ground water seepage moderates fluctuation in precipitation.                                                        |

٦

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>wetland                                                 | Stress to assemblages<br>Changes to species assemblages (biological interactions)<br>Increases in summer drought may impact peat |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Are there any exposures that<br>you think might be beneficial<br>to this type of wetland? If so,<br>please describe                                 | Potentially longer hydroperiod                                                                                                   |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              | Slightly vulnerable (5-10%)                                                                                                      |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | Habitat alteration/altered hydrology<br>Invasives (pest-like)                                                                    |
| List species associated with<br>this type of wetland that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why | Black ash (emerald ash borer)<br>Northern white cedar (edge of range)<br>Hemlock (woolly adelgid)                                |
| List species associated with<br>this type of wetland that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 | Red maple (generalist – wider tolerance)                                                                                         |

### Ground Water Seepage and Flooded Swamps – PAGE 3

| Natural Community Type                              | Patch<br>Size | S<br>rank |
|-----------------------------------------------------|---------------|-----------|
| Northern White Cedar Swamp                          | S             | S3        |
| Red Maple-Black Ash Seepage Swamp                   | S-L           | S4        |
| Calcareous Red Maple-Tamarack Swamp                 | S             | S2        |
| Red or Silver Maple-Green Ash Swamp                 | L             | S3        |
| Hemlock-Balsam Fir-Black Ash Seepage Swamp          | S             | S3        |
| Red Maple-Northern White Cedar Swamp                | L             | S3        |
| Wet Clayplain Forest (deep soils, not seepage)      | S             | S2        |
| Wet Sand-Over-Clay Forest (deep soils, not seepage) | S             | S2        |
| Seep                                                | S             | S4        |

Ground Water Seepage and Flooded Swamps encompass the following natural community types:

| List ex<br>codes                                                                                                                                                                                                   | xposures that you think<br>from the exposures list | will have direct, negative impacts on this type of wetland (we encourage you to use<br>but free text is ok as well)                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tors                                                                                                                                                                                                               | Thermal                                            | B, C                                                                                                                                                                                           |
| nge Fact                                                                                                                                                                                                           | Hydrologic                                         | G (summer drought), I, N                                                                                                                                                                       |
| ate Chai                                                                                                                                                                                                           | Extreme<br>events/disturbance                      | Q                                                                                                                                                                                              |
| y Clin                                                                                                                                                                                                             | Phenology                                          | W (pollinators)                                                                                                                                                                                |
| Key                                                                                                                                                                                                                | Other                                              |                                                                                                                                                                                                |
| <ul> <li>☑ Other</li> <li>Which of these<br/>exposures (or<br/>combination of<br/>exposures) do you think<br/>will have the greatest<br/>negative impacts on this<br/>type of wetland?<br/>Describe why</li> </ul> |                                                    | Peat accumulating wetlands are susceptible to oxidizing conditions associated<br>with drier summers and warmer temperatures.<br>Seasonal precipitation<br>Soil moisture<br>Short-term droughts |
| Vuln                                                                                                                                                                                                               | erability Rating                                   | Slightly vulnerable (5-10%)                                                                                                                                                                    |
| Confidence Score                                                                                                                                                                                                   |                                                    | Medium                                                                                                                                                                                         |
| Sensi                                                                                                                                                                                                              | tivity Factors                                     | Groundwater<br>Being on the edge of lakes                                                                                                                                                      |

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>wetland                                                 | Changes in species assemblages (biological interactions)<br>Invasives (rich and intermediate fens)<br>Oxidation of peat with summer drought |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Are there any exposures that<br>you think might be beneficial<br>to this type of wetland? If so,<br>please describe                                 |                                                                                                                                             |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              | Moderately (10-25%)                                                                                                                         |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | Habitat alteration                                                                                                                          |
| List species associated with<br>this type of wetland that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why | Sphagnum                                                                                                                                    |
| List species associated with<br>this type of wetland that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 |                                                                                                                                             |

### **Open Peatlands – PAGE 3**

| Natural Community Type                     | Patch<br>Size | S<br>rank |
|--------------------------------------------|---------------|-----------|
| Dwarf Shrub Bog                            | S             | S2        |
| Black Spruce Woodland Bog                  | S             | S2        |
| Pitch Pine Woodland Bog                    | S             | S1        |
| Alpine Peatland                            | S             | S1        |
| Poor Fen                                   | S             | S2        |
| Intermediate Fen (ground water moderation) | S             | S2        |
| Rich Fen (ground water moderation)         |               | S2        |

Open Peatlands encompass the following natural community types:
| List ex<br>codes                                                                                                                                                       | will have direct, negative impacts on this type of wetland (we encourage you to use<br>but free text is ok as well) |                                                                                                                         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| tors                                                                                                                                                                   | Thermal                                                                                                             | A, B, C, E                                                                                                              |  |  |  |
| late Change Fact                                                                                                                                                       | Hydrologic                                                                                                          | G (summer drought), I, J                                                                                                |  |  |  |
|                                                                                                                                                                        | Extreme<br>events/disturbance                                                                                       | Q, R, S                                                                                                                 |  |  |  |
| y Clin                                                                                                                                                                 | Phenology                                                                                                           | W (pollinators)                                                                                                         |  |  |  |
| Ke                                                                                                                                                                     | Other                                                                                                               |                                                                                                                         |  |  |  |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why |                                                                                                                     | vith drier summers and warmer temperatures.<br>Seasonal precipitation<br>Soil moisture<br>Short-term droughts<br>Storms |  |  |  |
| Vulnerability Rating                                                                                                                                                   |                                                                                                                     | Moderately vulnerable (10-25%)                                                                                          |  |  |  |
| Confidence Score                                                                                                                                                       |                                                                                                                     | Medium                                                                                                                  |  |  |  |
| Sensitivity Factors                                                                                                                                                    |                                                                                                                     |                                                                                                                         |  |  |  |

Г

| Open                                                                                                                                                | reutinities (recipitation dependent) rition 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>wetland                                                 |                                               |
| Are there any exposures that<br>you think might be beneficial<br>to this type of wetland? If so,<br>please describe                                 |                                               |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              |                                               |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | Habitat alteration                            |
| List species associated with<br>this type of wetland that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why |                                               |
| List species associated with<br>this type of wetland that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 |                                               |

## **Open Peatlands – PAGE 3**

| Natural Community Type                     | Patch<br>Size | S<br>rank |
|--------------------------------------------|---------------|-----------|
| Dwarf Shrub Bog                            | S             | S2        |
| Black Spruce Woodland Bog                  | S             | S2        |
| Pitch Pine Woodland Bog                    | S             | S1        |
| Alpine Peatland                            | S             | S1        |
| Poor Fen                                   | S             | S2        |
| Intermediate Fen (ground water moderation) | S             | S2        |
| Rich Fen (ground water moderation)         | S             | S2        |

Open Peatlands encompass the following natural community types:

| List exposures that you think will have direct, negative impacts on this type of wetland (we encourage you to use codes from the exposures list but free text is ok as well) |                               |                                                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Ors                                                                                                                                                                          | Thermal                       | C, E                                                                                                      |  |  |  |
| ate Change Fact                                                                                                                                                              | Hydrologic                    | F, I G, H, K, M                                                                                           |  |  |  |
|                                                                                                                                                                              | Extreme<br>events/disturbance | P, Q, S                                                                                                   |  |  |  |
| <i>v</i> Clim                                                                                                                                                                | Phenology                     | U, W                                                                                                      |  |  |  |
| Key                                                                                                                                                                          | Other                         | Invasives (buckthorn, purple loosestrife)                                                                 |  |  |  |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why       |                               | Ice dynamics<br>Flood events<br>Soil moisture<br>Fire<br>Extreme hot days<br>Flood events<br>Spring flows |  |  |  |
| Vulnerability Rating                                                                                                                                                         |                               | L-M, M, M, H, M, M, M                                                                                     |  |  |  |
| Confidence Score                                                                                                                                                             |                               | M, M, L, L, M, L, M                                                                                       |  |  |  |
| Sensitivity Factors                                                                                                                                                          |                               | Buffers<br>Depth of water                                                                                 |  |  |  |

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>wetland                                                 |                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Are there any exposures that<br>you think might be beneficial<br>to this type of wetland? If so,<br>please describe                                 | Longer growing season<br>Earlier onset of spring                                         |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              |                                                                                          |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | Shoreline hardening<br>Agricultural conversion<br>Development<br>Groundwater withdrawals |
| Do you actively manage this<br>type of wetland? If so,<br>describe how (BMPs,<br>regulatory mechanisms, etc.)                                       |                                                                                          |
| List species associated with<br>this type of wetland that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why |                                                                                          |
| List species associated with<br>this type of wetland that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 |                                                                                          |

### Shrub Swamps – PAGE 3

| Natural Community Type     | Patch<br>Size | S<br>rank |
|----------------------------|---------------|-----------|
| Alluvial Shrub Swamp       | L             | S3        |
| Alder Swamp                | L             | S5        |
| Sweet Gale Shoreline Swamp | S             | S3        |
| Buttonbush Swamp           | S             | S2        |
| Buttonbush Basin Swamp     | S             | S2        |

Shrub Swamps encompass the following natural community types:

## Do you think these natural community types are likely to respond similarly to climate change? If not, describe differences

Sweet gale, buttonbush different from alluvial

Do you manage these natural community types differently from one another? If so, describe

# APPENDIX 3I

Conceptual diagram for peatlands under a warming temperatures scenario



### **Conceptual Diagram SCENARIO 1: WARMING TEMPERATURES – Peatland Habitat Vulnerabilities**

## APPENDIX 3J

Wetlands – Literature

#### WETLANDS

Brinson, M. M. (1993). A Hydrogeomorphic Classification for Wetlands. (Wetlands Research Program Technical Report WRP-DE-4) US Army Corps of Engineers.

Brinson, M. M. and Rheinhardt, R. (1996). The Role of Reference Wetlands in Functional Assessment and Mitigation. Ecological Applications, 6(1), 69-76.

Brown, J., Bach, L., Aldous, A. and Wyers, A. (nd). Overcoming data shortfalls to locate groundwaterdependent ecosystems and assess threats to groundwater quantity and quality. Presented at the International Association of Hydrogeologists. Retrieved from aquadoc.typepad.com/waterwired/files/iah paper jbrown final.pdf

Brown, J., Wyers, A., Aldous, A. and Bach, L. (2007). Groundwater and Biodiversity Conservation: A Methods Guide for Integrating Groundwater Needs of Ecosystems and Species into Conservation Plans in the Pacific Northwest. (pp. 176) The Nature Conservancy. Available from http://aquadoc.typepad.com/waterwired/2008/02/tnc-manual-grou.html

Climate Change and Freshwater. (2012). Climate change - a threat to aquatic ecosystems. Available from http://www.climate-and-freshwater.info/

Comer, P., Goodin, K., Tomaino, A., Hammerson, G., Kittel, G., Menard, S., et al. (2005). Biodiversity values of geographically isolated wetlands in the United States. Arlington, VA: NatureServe. Available from www.natureserve.org/publications/isolatedwetlands.jsp

Dossena, M., Yvon-Durocher, G., Grey, J., Montoya, J. M., Perkins, D. M., Trimmer, M., et al. (2012). Warming alters community size structure and ecosystem functioning Proceedings of the Royal Society. Retrieved from

http://rspb.royalsocietypublishing.org/content/early/2012/04/10/rspb.2012.0394.short?rss=1

Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecological Management, 17, 71–84. Retrieved from www.wetlands.org/\_strp/cfforum/fileattachments/fulltext.pdf

Faber-Langendoen, D., Rocchio, J., Schafale, M., Nordman, C., Pyne, M., Teague, J., et al. (2006). Ecological integrity assessment and performance measures for wetland mitigation. (pp. 44). Arlington, VA: NatureServe. Available from www.natureserve.org/publications/eia\_wetland\_032707.pdf

Finlayson, C. M., Gitay, H., Bellio, M., van Dam, R. and Taylor, I. (2006). Climate variability and change and other pressures on wetlands and waterbirds: impacts and adaptation Waterbirds Around the World. (pp. 88–97). Available from

http://www.cms.int/bodies/ScC/14th\_scientific\_council/pdf/en/ScC14\_Inf\_18\_WAW\_Pressures%20on% 20Wetlands%20and%20waterbirds\_Eonly.pdf

Mandia, S. (2010). Climate Change Impact on Freshwater Wetlands, Lakes & Rivers. Available from http://profmandia.wordpress.com/2010/08/16/climate-change-impact-on-freshwater-wetlands-lakes-rivers/

Natural Resources Conservation Service. (2008). Hydrogeomorphic Wetland Classification System: An Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service. (Technical Note No. 190–8–76, pp. 10) United States Department of Agriculture Natural Resources Conservation Service, Available from

http://www.cpcb.ku.edu/progwg/html/assets/wetlandwg/hydrogeo.pdf

Poff, N. L., Brinson, M. M. and Day, J. W. J. (2002). Aquatic ecosystems & Global climate change -Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. (pp. 56) Pew Center on Global Climate Change. Available from www.pewtrusts.org/our\_work\_report\_detail.aspx?id=30677

REFRESH. (2012). Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems. Available from http://www.refresh.ucl.ac.uk/about/background

Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G. and Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351, 139–153. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022169407007433

U.S. Army Corps of Engineers. (2008). DRAFT Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region. (Draft for Peer Review and Field Testing 7-3-2008) U.S. Army Corps of Engineers Wetlands Regulatory Assistance Program.

Vermont Department of Environmental Conservation and Vermont Department of Fish and Wildlife. (2003). Vermont Wetlands Bioassessment Program - An Evaluation of the Chemical, Physical, and Biological Characteristics of Seasonal Pools and Northern White Cedar Swamps. Available from http://www.vtwaterquality.org/bass/htm/bs\_vernal.htm

Winter, T. C. (2000). The vulnerability of wetlands to climate change: a hydrologic landscape perspective. 36(2), 305-311.

Wolock, D. M. (2003). Base-flow index grid for the conterminous United States. (U.S. Geological Survey Open-File Report 03–263) U.S. Geological Survey. Available from http://water.usgs.gov/lookup/getspatial?bfi48grd

Woodward, G., Perkins, D. M. and Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society, 365, 2093–2106. Retrieved from rstb.royalsocietypublishing.org/content/365/1549/2093.full.pdf

# APPENDIX 3K

Completed worksheets on ecological impacts of climate change on riverine habitats (assessments were performed during follow-up expert elicitation exercises by VT Fish & Wildlife)

|            | Code | Parameter                | Trend    | Projections (range = low to high emissions scenario)                                                                                                                           |  |  |
|------------|------|--------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| mperature  | Α    | Annual temperature       | increase | by 2050, projected increase 3.7 to 5.8°F; by 2100, 5.0 to 9.5°F                                                                                                                |  |  |
|            | В    | Seasonal<br>temperature  | increase | by 2050, projected increase in winter (DJF) 4.3 to 6.1°F;<br>summer (JJA) 3.8 to 6.4°F                                                                                         |  |  |
|            | С    | # Hot days               | more     | more frequent and more intense; by end of century, northern cities can expect 30-60+ days of temperatures >90°F                                                                |  |  |
| Te         | D    | # Cold days              | fewer    | reduction in days with cold ( $<0^{\circ}$ F) temperatures                                                                                                                     |  |  |
|            | Ε    | Variability              | increase | greater variability (more ups and downs)                                                                                                                                       |  |  |
|            | F    | Annual precipitation     | increase | by end of century, projected total increase of 10% (about 4 inches per year)                                                                                                   |  |  |
|            | G    | Seasonal precipitation   | variable | more winter rain, less snow; by 2050, winter precipitation could<br>increase by 11 to 16% on average; little change expected in<br>summer, but projections are highly variable |  |  |
|            | Н    | Heavy rainfall events    | increase | more frequent and intense                                                                                                                                                      |  |  |
| gy         | Ι    | Soil moisture            | decrease | reduction in soil moisture and increase in evaporation rates in the summer                                                                                                     |  |  |
| drolo      | J    | Snow                     | decrease | fewer days with snow cover (by end of century could lose 1/4 to 1/2+ of snow-covered days; increased snow density                                                              |  |  |
| Hy         | К    | Spring flows             | earlier  | earlier snowmelt, earlier high spring flows; could occur 10 days to >2 weeks earlier                                                                                           |  |  |
|            | L    | Summer low flows         | longer   | extended summer low-flow periods; could increase by nearly a month under high emissions scenario                                                                               |  |  |
|            | Μ    | Ice dynamics             | changing | less ice cover, reduced ice thickness                                                                                                                                          |  |  |
|            | N    | Fluctuating lake levels  | increase | greater variability, greater amount of change in lake levels                                                                                                                   |  |  |
|            | 0    | Lake stratification      |          | some lakes may stratify earlier                                                                                                                                                |  |  |
| nts        | Р    | Flood events             | increase | more likely, particularly in winter and particularly under the high emissions scenario                                                                                         |  |  |
| me evel    | Q    | # of short-term droughts | increase | by end of century, under high emissions scenario, short terms<br>droughts could occur as much as once per year in some places                                                  |  |  |
| tre        | R    | Storms                   | increase | more frequent and intense (ice, wind, etc.)                                                                                                                                    |  |  |
| Ex         | S    | Fire                     |          | more likely                                                                                                                                                                    |  |  |
| 3.y        | Т    | Growing season           | longer   | by end of century, projected to be 4 to 6 weeks longer                                                                                                                         |  |  |
| 30lo       | U    | Onset of spring          | earlier  | by end of century, could be 1 to almost 3 weeks earlier                                                                                                                        |  |  |
| <b>n</b> o | V    | Onset of fall            | later    | by end of century, could arrive 2 to 3 weeks later                                                                                                                             |  |  |
| Phe        | W    | Biological interactions  |          | could potentially be disrupted                                                                                                                                                 |  |  |

### **EXPOSURES/KEY CLIMATE CHANGE FACTORS**

Add ins:

X – changing light conditions Y – spring runoff - reduced volume

Stream classification scheme used by VT Fish & Wildlife for this exercise

Similarities also exist between fish and macroinvertebrate categories in running waters. Several macroinvertebrate categories were equivalent to one or two fish categories (Table 7). Assemblage structure of both groups appeared to be influenced by stream size, site elevation and proximity to Lake Champlain. Despite similarities between these two groups at a coarse level, intrinsic biological and ecological differences between them still seem, at this time, to imply separate classification frameworks

| Macroinvertebrate Category                        | Fish Category                                                                                                                                                               |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1] Small, headwater acidic mountain streams      | [1] Small, high elevation cold, headwater<br>streams<br>or no fish                                                                                                          |
| [2] Small headwater mountain streams              | [1 or 2] Small, high elevation cold, headwater streams                                                                                                                      |
| [3] Moderately-sized mountain streams             | [3] Moderately-sized high elevation<br>coldwater streams and some [4] Moderately-<br>sized streams and small rivers mid elevation<br>and mixed cold-warm water              |
| [4] Lower reaches of small rivers                 | [4] Moderately-sized streams and small rivers<br>mid elevation, mixed cold-warm water<br>and some [5] Moderately-sized streams to<br>small rivers, low elevation, warmwater |
| [5] Small, headwater, low gradient marsh streams, | [2] or [3]                                                                                                                                                                  |
| [6] Medium-sized, mid-reach, low gradient streams | [3] or [4]                                                                                                                                                                  |
| [7] Small streams in the Lake Champlain valley    | [5] or [6] Moderate to large, warmwater<br>rivers entering directly into Lake Champlain                                                                                     |
| [8] Moderate to large rivers directly entering    | [6]                                                                                                                                                                         |

Table 7. Running waters macroinvertebrate assemblage types and analogous fish assemblage types.

| Macroinvertebrate Category    | Fish Category  |
|-------------------------------|----------------|
| Lake Champlain                |                |
| [9] Lake marsh outlet streams | [3] or [4]     |
| [10] Spring seeps             | [1] or no fish |

#### Use of the Current Format by Resource Managers

Based on the current preliminary effort, resource managers and others wishing to predict what types of biological assemblages may be present at specific sites will need to consider each plant or animal group classification *individually*. It can be expected that different combinations of group assemblage types will be present over the range of waters considered. One difficulty is that the habitat types descriptive of significant biological assemblages provided here are not exclusive to the point where one could predict a community type by identifying the point of interest on a map. Much overlap occurs in habitat ranges between categories for all groups. While further data collection and examination of additional physico-chemical variables may provide more resolution of category descriptions, it is believed that two-dimensional maps will be of only limited use in assemblage prediction. Despite the fact that all possible environmental variables were not evaluated in this work, it appears at this time that most, if not all, of the plant and animal groups considered here are not distributed in a manner which can be easily placed into large, general zones and mapped. Examples of variables not easily portrayed conventionally on a map would include lake size and depth, stream size and to some extent, water temperature. Subsequently, for the present at least, resource managers should consult biologists for their appraisals or in some cases to actually conduct field collections when attempting to specifically determining assemble type for a particular location.

#### Best Example Sites of Assemblage Types and Conservation Priorities

The generation of best example sites for use as candidates for Priority Conservation Areas in Vermont is an important aspect of this current effort. The workgroup feels that the lists of sites for macrophytes for lakes and macroinvertebrates and fish in streams truly represent least-impacted conditions for their respective categories. It is believed that these lists represent the best researched effort currently available. The prioritizing of assemblage categories according to the need to conserve best example sites and populations was based on the relative number of example sites available. The highest priority assemblage types are generally the ones with the fewest number of representative or Abest example@ sites and would be the strongest candidates to be designated as Priority Conservation Areas. Again, it should be understood that the recommendations for PCA=s contained in the individual discussions are based on the classification and are subject to change with the addition of future data. Table 8 lists the current best example sites from each of the above three groups.

#### Level of Biological Classification

The Nature Conservancy=s Classification proposed Framework for Freshwater Communities (The Nature Conservancy 1997) identifies two levels of possible biotic organization in aquatic settings. The Aalliance@ level is more coarsely defined and includes aggregations which repeat over large ranges in macrohabitat types. An example would be the fishes present only in the low elevation Champlain Valley. The finer Aassociation@ level includes assemblages which correspond to micro and macrohabitat changes. An example of association is a group of fishes which are riffle specialists, being found mostly in this particular type of habitat.

The classification proposed here identifies alliance-level assemblages for most of the groups. An exception is the macroinvertebrate and classification for lakes which considers broad lake type as well as specific zones within the lake. Achieving an association-level classification may also be possible for macrophyte assemblages of lakes. The necessary information for determining this is available in the VTDEC database. Unfortunately, as mentioned above, this information needs to be placed into a digitized

| Table 3. Physico-chemical variables for the seven running water fish assemblage categories for Vermor | nt. |
|-------------------------------------------------------------------------------------------------------|-----|
| Means are given in bold and range in ().                                                              |     |

| Cluster<br>Number | Elevation (ft.)               | Site Drainage<br>Area (km <sup>2</sup> ) | ANC<br>(Mg/l)               | % Fines                  | % Pool                    |
|-------------------|-------------------------------|------------------------------------------|-----------------------------|--------------------------|---------------------------|
| 1                 | <b>1436</b> (930-2162)        | <b>11</b> (3-30)                         | <b>8</b> (1-27)             | <b>5</b> (0-20)          | <b>36</b> (10-75)         |
|                   | n=13                          | n=13                                     | n=11                        | n=11                     | n=11                      |
| 2                 | <b>998</b> (416-1940)         | <b>12</b> (2-30)                         | <b>36</b> (1-103)           | <b>16</b> (0-50)         | <b>45</b> (15-65)         |
|                   | n=15                          | n=15                                     | n=10                        | n=12                     | n=12                      |
| 3                 | <b>980</b> (350-1880)         | <b>41</b> (4-103)                        | <b>43</b> (3-227)           | <b>14</b> (0-100)        | <b>38</b> (10-70)         |
|                   | n=31                          | n=31                                     | n=26                        | n=26                     | n=26                      |
| 4                 | <b>659</b> (290-1160)<br>n=13 | <b>104</b> (10-298)<br>n=13              | <b>67</b> (10-196) n=10     | <b>11</b> (5-20)<br>n=11 | <b>41</b> (15-75)<br>n=11 |
| 5                 | <b>232</b> (108-530)<br>n=16  | <b>88</b> (2-515) n=16                   | <b>109</b> (26-227)<br>n=11 | <b>51</b> (5-100) n=11   | <b>58</b> (20-95) n=11    |
| 6                 | <b>191</b> (102-440)          | <b>336</b> (8-728)                       | insufficient                | insufficient             | insufficient              |
|                   | n=7                           | n=7                                      | data                        | data                     | data                      |
| (7*)              | <b>190-400</b> (approx)       | Large to very large                      | -                           | -                        | -                         |

\* Category was conceptually developed and includes the lower Connecticut River in Vermont and the lower reaches of its larger tributaries.

Table 4. Proposed biological and physico-chemical category names for the running water fish assemblages with the priority for conservation for each assemblage type.

| Category<br>Number | Conservation<br>Priority | Biological Assemblage<br>Name     | Physical Habitat Designation                                                   |  |
|--------------------|--------------------------|-----------------------------------|--------------------------------------------------------------------------------|--|
| 1                  | low                      | Brook Trout                       | Small, high elevation, cold, headwater streams                                 |  |
| 2                  | low                      | Brook Trout - Slimy<br>Sculpin    | Small, high elevation, cold, headwater streams                                 |  |
| 3                  | moderate                 | Brook Trout - Blacknose<br>Dace   | Moderately-sized, high elevation, coldwater streams                            |  |
| 4                  | moderate                 | Blacknose Dace -<br>Common Shiner | Moderately-sized streams and small rivers mid-elevation, mixed cold-warmwater. |  |
| 5                  | high                     | Bluntnose Minnow -<br>Creek Chub  | Moderately-sized streams to small rivers low elevation, warmwater.             |  |
| 6                  | high                     | Pumpkinseed - Bluntnose<br>Minnow | Moderate to large, warmwater rivers<br>entering directly into Lake Champlain.  |  |
| 7                  | ?                        | American Shad-Atlantic            | Connecticut River and lower tributary                                          |  |

Stream worksheet completed by VT Fish & Wildlife

|              | Confi       | Vulne            | Comp                                                              | List ti<br>you th<br>benefi                 | List tl<br>you th<br>greate                                    | Ke                                     | y Clima   | te Char                              | nge Facto                                       | ors                    | <b>.</b>                                  | Runn<br>classif                                         |                                 |
|--------------|-------------|------------------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------|-----------|--------------------------------------|-------------------------------------------------|------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------|
|              | dence Score | erability Rating | oosition changes?                                                 | he exposures that<br>nink might be<br>icial | he exposures that<br>nink will have the<br>est negative impact | Other                                  | Phenology | Extreme<br>events/disturbance        | Hydrologic                                      | Thermal                | List exposures that you thi               | ing waters<br>fication scheme                           | Ŧ                               |
| potent       | high        | H .              | Loss of coldwater<br>stenotherms                                  | F, H (Austr out of                          | с, н, l <sub>i</sub> y                                         | U, V (potential,<br>U, V (nes impacts) | W         | tish wispocesment, reduce<br>P, Q, ■ | G, H, K(I) &, J, Y<br>H(scouring, loss of rest) | A, B, C, E <b>, D</b>  | nk will negatively impact this natural co | High gradient, coldwater, high<br>elevation, acidic     | DONT - Small Streams (classific |
| ally combine | high        | Н                | Loss of coldwater<br>stenotherms                                  | F,H (soume)                                 | с, н, г, <b>ч</b>                                              | U, V (source)                          | W         | P, Q, <b>B</b>                       | G, H, K, L, 10, J, Y<br>H (same)                | А, В, С, Е, <b>Э</b>   | mmunity type (we encourage you t          | High gradient, coldwater, high<br>elevation, NOT acidic | stion based on fish and main    |
| split out    | medium      | % sc-0           | Loss of coldwater<br>stenotherms                                  | Ţ                                           | C, ₩, ∟, \                                                     |                                        | W         | P,Q                                  | G, H, L, ♥Y                                     | A, B, C <sub>ا</sub> ک | o use codes from the exposures list       | Low gradient, marsh                                     | Split out                       |
| split out    | medium      | mod 10-25%       | increase & of worm<br>Interfectioner<br>water tolerant<br>Species | Т                                           | ,C, 🛤                                                          |                                        | W         | P, Q                                 | Н, К, L, 🗰                                      | A, B, C, ₩             | but free text is ok as well)              | Lake Champlain valley<br>Ligh DH and<br>ANC             | split out                       |

| Ω.                         |
|----------------------------|
| $\mathbf{\hat{F}}$         |
| Ω                          |
| ▼                          |
| 1                          |
| $\boldsymbol{\mathcal{O}}$ |
| ma                         |
|                            |
| Ñ                          |
| Ę.                         |
| es.                        |
| Ē                          |
| <b>W</b>                   |

Do you think the small stream classes are likely to respond similarly enough to climate change to group them if one were to manage them for climate change? If not: 1) which ones do you think should be 'split' out (and potentially subgrouped); and 2) why?

| Formation Type                                                                                                                     | Small Streams                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Vulnerability to climate change                                                                                                    | high                                                                                                        |
| <b>Confidence in climate change rating</b>                                                                                         | high                                                                                                        |
| Mediating Factors                                                                                                                  | Riparian shading, groundwater influence, north-facing, wish percentage of nutward<br>elevertics wellersheds |
| Vulnerability to non-climatic<br>stressors                                                                                         | medium                                                                                                      |
| List non-climatic stressors that<br>affect this group; circle those that<br>you think pose a greater threat<br>than climate change | A, B, @ (culverts)                                                                                          |
|                                                                                                                                    |                                                                                                             |
| Notes                                                                                                                              | Less chance of development in small stream vs. larger streams                                               |

| l                                 |                                                  |                                               |                                              |                          |                         | Tering                     |
|-----------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------|-------------------------|----------------------------|
| List exposu                       | res that you think will negatively               | y impact this natural con                     | munity type (we encour                       | age you to use codes fro | m the exposures list bu | t free text is ok as well) |
| stors                             | Thermal                                          | A,B,C                                         | B,C                                          |                          |                         |                            |
| s J əga                           | Hydrologic                                       | H, W. U. R.                                   | H, Lid                                       |                          |                         |                            |
| вdЭ этя                           | Extreme<br>events/disturbance                    | Q.P                                           | Q, P                                         |                          |                         | ,                          |
| 3mil)                             | Phenology                                        | 3                                             | R                                            |                          |                         |                            |
| Кеу                               | Other                                            |                                               |                                              |                          |                         |                            |
| List the e<br>will have<br>impact | xposures that you think<br>the greatest negative | L1 C1P                                        | ric,P                                        |                          |                         |                            |
| List the e<br>might be            | xposures that you think<br>beneficial            | L                                             | H L                                          |                          |                         |                            |
| Composit                          | tion changes?                                    | Eastern Pearl<br>Shiel                        | increase of<br>thermally<br>tolerant species |                          |                         |                            |
| Vulnerab                          | ility Rating                                     | moderately                                    | Strephtly                                    |                          |                         |                            |
| Confiden                          | ce Score                                         | medium                                        | medium                                       | • •                      |                         |                            |
|                                   |                                                  | River<br>River<br>2-41 Strewn ord<br>Resender | X Big River<br>System<br>of + class          |                          |                         |                            |
| 1                                 |                                                  |                                               | Connectual<br>White<br>Lamoial               |                          |                         |                            |

.

## Habitat Worksheet –Floodplain Forests – PAGE 1 (contact: Steve Parren)

| List e:<br>(we er                                                                                                                                                      | xposures that you think<br>acourage you to use cod | will have direct, negative impacts on this type of<br>es from the exposures list but free text is ok as well)                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| tors                                                                                                                                                                   | Thermal                                            | B, D                                                                                                                                      |
| nge Fact                                                                                                                                                               | Hydrologic                                         | G, H (due to result on flooding), I, K, M, N (lakeside floodplain forest), Y                                                              |
| nate Cha                                                                                                                                                               | Extreme<br>events/disturbance                      | P, R                                                                                                                                      |
| / Clin                                                                                                                                                                 | Phenology                                          | Т                                                                                                                                         |
| Other                                                                                                                                                                  |                                                    | Z (invasive species)                                                                                                                      |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why |                                                    | K, P, Y, N (lakeside floodplain only) – changes in flooding regime (duration<br>and frequency) and amount of alluvial deposition/scouring |
| Vulnerability Rating                                                                                                                                                   |                                                    | Highly Vulnerable (if spring runoff volumes are lower and there is not regular floodplain flooding)                                       |
| Conf                                                                                                                                                                   | idence Score                                       | Medium                                                                                                                                    |
| Sensitivity Factors                                                                                                                                                    |                                                    | If the lake leve is higher in late winter the low spring flows may be less damaging.                                                      |

## Floodplain Forests – PAGE 2 (contact: Steve Parren)

|                                                                                                                                                     | Manahamaldan                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>habitat                                                 | More boxelder                                                                                                            |
| Are there any exposures that<br>you think might be beneficial<br>to this type of habitat? If so,<br>please describe                                 |                                                                                                                          |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              | Moderately Vulnerable (but we have already lost as much as 75% of<br>Vermont's floodplain forest to development)         |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | B (floodplain development, river channelization, dams), C, D, J, I<br>(flotsam pollution in lakeside floodplain forests) |
| Do you actively manage this<br>type of habitat? If so,<br>describe how (BMPs,<br>regulatory mechanisms, etc.)                                       | Some remaining floodplain forests are logged.                                                                            |
| List species associated with<br>this type of habitat that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why |                                                                                                                          |
| List species associated with<br>this type of habitat that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 | Boxelder is non-native and likely to expand                                                                              |

#### Floodplain Forests – PAGE 3

| Natural Community Type                                 | Patch<br>Size | S<br>rank |
|--------------------------------------------------------|---------------|-----------|
| Silver maple-ostrich fern riverine floodplain forest   | L             | S3        |
| Silver maple-sensitive fern riverine floodplain forest | L             | S3        |
| Northern Conifer floodplain forest                     | S             | S2        |
| Sugar Maple-Ostrich Fern Riverine Floodplain Forest    | S             | S2        |
| Lakeside Floodplain Forest                             | S             | S3        |
|                                                        |               |           |
|                                                        |               |           |
|                                                        |               |           |

This habitat/formation encompass the following natural community types:

#### Do you think these natural community types are likely to respond similarly to climate change? If not, describe differences

Lakeside floodplain forests are dependant on Lake Champlain lake level fluctuations so will respond differently than the riverine floodplain forests.

Northern Conifer Forests are poorly understood but may be at the southern limit of their range in northern Vermont and species assemblages may be shifted northward or be put under stress.

### Habitat Worksheet –Wet Shores – PAGE 1 (contact: Steve Parren)

| List e:<br>(we er                                                                                                                                                      | xposures that you think<br>acourage you to use cod | will have direct, negative impacts on this type of<br>es from the exposures list but free text is ok as well)                               |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Thermal<br>Thermal<br>Hydrologic                                                                                                                                       |                                                    | B, C (heating of exposed substrate)                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                        |                                                    | H (due to result on flooding), I (especially for Riverside Seeps), L, M, N<br>(just for Outwash Plain Pondshore), Y (reduction in scouring) |  |  |  |  |  |  |
| nate Cha                                                                                                                                                               | Extreme<br>events/disturbance                      | Р                                                                                                                                           |  |  |  |  |  |  |
| , Clin                                                                                                                                                                 | Phenology                                          | T (opportunity for more plant colinization)                                                                                                 |  |  |  |  |  |  |
| S Other                                                                                                                                                                |                                                    | Z (invasives on exposed shoreslines), Flooding of transforming<br>dragonflies (may be covered under rivers)                                 |  |  |  |  |  |  |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on this<br>type of wetland?<br>Describe why |                                                    |                                                                                                                                             |  |  |  |  |  |  |
| Vulnerability Rating                                                                                                                                                   |                                                    | Highly Vulnerable                                                                                                                           |  |  |  |  |  |  |
| Confidence Score                                                                                                                                                       |                                                    | Medium                                                                                                                                      |  |  |  |  |  |  |
| Sensitivity Factors                                                                                                                                                    |                                                    |                                                                                                                                             |  |  |  |  |  |  |

### Wet Shores – PAGE 2 (contact: Steve Parren)

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>habitat                                                 | Some open shorelines may become forested with floodplain species due<br>to less ice-scour and shorter duration flooding. More invasive (knotweed<br>and swallowwort) and more southern species. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Are there any exposures that<br>you think might be beneficial<br>to this type of habitat? If so,<br>please describe                                 |                                                                                                                                                                                                 |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              | Moderate (but high percentage of shorelines are already altered)                                                                                                                                |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change            | B (dams and channelization), C, D, E (shoreline armoring)                                                                                                                                       |
| Do you actively manage this<br>type of habitat? If so,<br>describe how (BMPs,<br>regulatory mechanisms, etc.)                                       | Dam flow regulations to mimic natural hydrology                                                                                                                                                 |
| List species associated with<br>this type of habitat that you<br>think will be <i>most vulnerable</i><br>to climate change effects.<br>Describe why | Tiger beetles (need annual scouring); there are many rare plants that are<br>likely to be adversely effected by reduced ice scour, less flooding,<br>increase in woody species and invasives    |
| List species associated with<br>this type of habitat that you<br>think will <i>do better</i> due to<br>climate change. Describe why                 |                                                                                                                                                                                                 |

#### Wet Shores – PAGE 3

| Natural Community Type     | Patch<br>Size | S<br>rank |
|----------------------------|---------------|-----------|
|                            |               |           |
| River Mud Shore            | S             | S3        |
| River Sand or Gravel Shore | S             | S3        |
| River Cobble Shore         | S             | S2        |
| Calcareous Riverside Seep  | S             | S1        |
| Rivershore Grassland       | S             | S3        |
| Lakeshore Grassland        | S             | S2        |
| Outwash Plain Pondshore    | S             | S1        |

This habitat/formation encompass the following natural community types:

## Do you think these natural community types are likely to respond similarly to climate change? If not, describe differences

Outwash Plain Pondshore and Lakeshore Grassland are dependent of lake flooding and ice-rafting, not river flooding, scouring, and deposition that affects most of the rivershore communities.

# APPENDIX 3L

Aquatic Macroinvertebrate Regional Thermal Indicator Taxa Table 3L-1. List of cold water regional indicator taxa (US EPA GCRP 2012, unpublished); for more information, contact Jen Stamp Jen.Stamp@tetratech.com).

| Indicator | TSN    | Order         | Family           | Genus             | Regional_FinalID      | Tolerance<br>Limit (°C) | Notes                     |
|-----------|--------|---------------|------------------|-------------------|-----------------------|-------------------------|---------------------------|
| cold      | 126703 | Diptera       | Simuliidae       | Prosimulium       | Prosimulium           | 10.6                    | level 1 (strongest)       |
| cold      | 100996 | Ephemeroptera | Ameletidae       | Ameletus          | Ameletus              | 11.3                    | level 1 (strongest)       |
| cold      | 102789 | Plecoptera    | Taeniopterygidae | Taeniopteryx      | Taeniopteryx          | 14.8                    | level 1 (strongest)       |
| cold      | 102517 | Plecoptera    | Nemouridae       |                   | Nemouridae            | 15.1                    | level 1 (strongest)       |
| cold      | 115131 | Trichoptera   | Rhyacophilidae   | Rhyacophila       | Rhyacophila carolina  | 15.6                    | level 1 (strongest)       |
| cold      | 115147 | Trichoptera   | Rhyacophilidae   | Rhyacophila       | Rhyacophila minor     | 16.1                    | level 1 (strongest)       |
| cold      | 102643 | Plecoptera    | Capniidae        |                   | Capniidae             | 16.4                    | level 1 (strongest)       |
| cold      | 115935 | Trichoptera   | Apataniidae      | Apatania          | Apatania              | 16.5                    | level 1 (strongest)       |
| cold      | 102995 | Plecoptera    | Perlodidae       | Isoperla          | Isoperla              | 16.5                    | level 1 (strongest)       |
| cold      | 103202 | Plecoptera    | Chloroperlidae   |                   | Chloroperlidae        | 17.2                    | level 1 (strongest)       |
| cold      | 115160 | Trichoptera   | Rhyacophilidae   | Rhyacophila       | Rhyacophila acutiloba | 16.9                    | level 2 (medium strength) |
| cold      | 120365 | Diptera       | Tipulidae        | Pseudolimnophila  | Pseudolimnophila      | 17.2                    | level 2 (medium strength) |
| cold      | 115399 | Trichoptera   | Hydropsychidae   | Diplectrona       | Diplectrona           | 17.4                    | level 2 (medium strength) |
| cold      | 100572 | Ephemeroptera | Heptageniidae    | Rhithrogena       | Rhithrogena           | 17.5                    | level 2 (medium strength) |
| cold      | 128951 | Diptera       | Chironomidae     | Parachaetocladius | Parachaetocladius     | 17.7                    | level 2 (medium strength) |
| cold      | 115995 | Trichoptera   | Limnephilidae    | Hydatophylax      | Hydatophylax          | 17.8                    | level 2 (medium strength) |
| cold      | 128477 | Diptera       | Chironomidae     | Brillia           | Brillia               | 18.1                    | level 2 (medium strength) |
| cold      | 114006 | Coleoptera    | Dryopidae        | Helichus          | Helichus              | 18.5                    | level 2 (medium strength) |
| cold      | 102471 | Plecoptera    | Pteronarcyidae   | Pteronarcys       | Pteronarcys           | 18.5                    | level 2 (medium strength) |
| cold      | 101233 | Ephemeroptera | Ephemerellidae   | Ephemerella       | Ephemerella           | 18.7                    | level 2 (medium strength) |
| cold      | 101324 | Ephemeroptera | Ephemerellidae   | Eurylophella      | Eurylophella          | 19                      | level 2 (medium strength) |
| cold      | 114244 | Coleoptera    | Elmidae          | Oulimnius         | Oulimnius             | 19.4                    | level 2 (medium strength) |
| cold      | 102840 | Plecoptera    | Leuctridae       |                   | Leuctridae            | 20.4                    | level 2 (medium strength) |
| cold      | 121027 | Diptera       | Tipulidae        | Dicranota         | Dicranota             | 20.7                    | level 2 (medium strength) |
| cold      | 115319 | Trichoptera   | Philopotamidae   | Dolophilodes      | Dolophilodes          | 20.9                    | level 2 (medium strength) |
| cold      | 116794 | Trichoptera   | Lepidostomatidae | Lepidostoma       | Lepidostoma           | 21                      | level 2 (medium strength) |
| cold      | 129205 | Diptera       | Chironomidae     | Tvetenia          | Tvetenia bavarica     | 21.2                    | level 2 (medium strength) |
| cold      | 117159 | Trichoptera   | Glossosomatidae  | Glossosoma        | Glossosoma            | 21.2                    | level 2 (medium strength) |
| cold      | 115133 | Trichoptera   | Rhyacophilidae   | Rhyacophila       | Rhyacophila fuscula   | 21.2                    | level 2 (medium strength) |
| cold      | 100817 | Ephemeroptera | Baetidae         | Baetis            | Baetis tricaudatus    | 21.5                    | level 2 (medium strength) |

Table 3L-1. Continued...

| Indicator | TSN    | Order          | Family           | Genus          | Regional_FinalID           | Tolerance<br>Limit (°C) | Notes                         |
|-----------|--------|----------------|------------------|----------------|----------------------------|-------------------------|-------------------------------|
| cold      | 120094 | Diptera        | Tipulidae        | Hexatoma       | Hexatoma                   | 22.9                    | level 2 (medium strength)     |
| cold      | 101095 | Ephemeroptera  | Leptophlebiidae  |                | Leptophlebiidae            | 23.5                    | level 2 (medium strength)     |
| cold      | 128704 | Diptera        | Chironomidae     | Eukiefferiella | Eukiefferiella brehmi      | 23.9                    | level 2 (medium strength)     |
| cold      | 114087 | Coleoptera     | Psephenidae      | Ectopria       | Ectopria                   | 24.2                    | level 2 (medium strength)     |
| cold      | 115586 | Trichoptera    | Hydropsychidae   | Ceratopsyche   | Ceratopsyche slossonae     | 24.4                    | level 2 (medium strength)     |
| cold      | 120165 | Diptera        | Tipulidae        | Limnophila     | Limnophila                 | 17.2                    | level 2 (medium strength)     |
| cold      | 128693 | Diptera        | Chironomidae     | Eukiefferiella | Eukiefferiella claripennis | 18.4                    | level 2 (medium strength)     |
| cold      | 119037 | Diptera        | Tipulidae        | Tipula         | Tipula                     | 21.9                    | level 2 (medium strength)     |
| cold      | 127076 | Diptera        | Ceratopogonidae  |                | Ceratopogonidae            | 22.3                    | level 2 (medium strength)     |
| cold      | 116910 | Trichoptera    | Brachycentridae  | Brachycentrus  | Brachycentrus numerosus    | 24.4                    | level 2 (medium strength)     |
| cold      | 102816 | Plecoptera     | Taeniopterygidae | Taenionema     | Taenionema                 | 10.3                    | limited regional distribution |
| cold      | 568816 | Trichoptera    | Hydropsychidae   | Ceratopsyche   | Ceratopsyche macleodi      | 10.4                    | limited regional distribution |
| cold      | 128703 | Diptera        | Chironomidae     | Eukiefferiella | Eukiefferiella brevicalcar | 11.9                    | limited regional distribution |
| cold      | 115132 | Trichoptera    | Rhyacophilidae   | Rhyacophila    | Rhyacophila fenestra       | 12.6                    | limited regional distribution |
| cold      | 115849 | Trichoptera    | Hydroptilidae    | Palaeagapetus  | Palaeagapetus              | 12.7                    | limited regional distribution |
| cold      | 102489 | Plecoptera     | Peltoperlidae    | Peltoperla     | Peltoperla                 | 13.8                    | limited regional distribution |
| cold      | 115150 | Trichoptera    | Rhyacophilidae   | Rhyacophila    | Rhyacophila invaria        | 14                      | limited regional distribution |
| cold      | 115556 | Trichoptera    | Hydropsychidae   | Parapsyche     | Parapsyche                 | 14.2                    | limited regional distribution |
| cold      | 103174 | Plecoptera     | Perlodidae       | Malirekus      | Malirekus                  | 14.9                    | limited regional distribution |
| cold      | 115596 | Trichoptera    | Hydropsychidae   | Ceratopsyche   | Ceratopsyche alhedra       | 15.2                    | limited regional distribution |
| cold      | 115161 | Trichoptera    | Rhyacophilidae   | Rhyacophila    | Rhyacophila carpenteri     | 15.5                    | limited regional distribution |
| cold      | 116912 | Trichoptera    | Brachycentridae  | Brachycentrus  | Brachycentrus americanus   | 16.7                    | limited regional distribution |
| cold      | 115149 | Trichoptera    | Rhyacophilidae   | Rhyacophila    | Rhyacophila manistee       | 16.9                    | limited regional distribution |
| cold      | 103124 | Plecoptera     | Perlodidae       | Isogenoides    | Isogenoides                | 18.4                    | limited regional distribution |
| cold      | 83122  | Trombidiformes | Hydrachnidae     |                | Hydrachnidae               | 22.5                    | limited regional distribution |
| cold      | 54553  | Tricladida     | Dugesiidae       | Cura           | Cura                       | 24.2                    | limited regional distribution |

Table 3L-2. List of cool water regional indicator taxa (US EPA GCRP 2012, unpublished); for more information, contact Jen Stamp Jen.Stamp@tetratech.com).

| ndicator | TSN    | Order          | Family            | Genus            | Regional_FinalID           | Tolerance<br>Limit (°C) | Notes                     |
|----------|--------|----------------|-------------------|------------------|----------------------------|-------------------------|---------------------------|
| cool     | 116497 | Trichoptera    | Odontoceridae     | Psilotreta       | Psilotreta                 | 24.8                    | level 1 (strongest)       |
| cool     | 128355 | Diptera        | Chironomidae      | Diamesa          | Diamesa                    | 25.2                    | level 1 (strongest)       |
| cool     | 117044 | Trichoptera    | Polycentropodidae | Polycentropus    | Polycentropus              | 27                      | level 1 (strongest)       |
| cool     | 128978 | Diptera        | Chironomidae      | Parametriocnemus | Parametriocnemus           | 27.1                    | level 1 (strongest)       |
| cool     | 128401 | Diptera        | Chironomidae      | Pagastia         | Pagastia                   | 27.3                    | level 1 (strongest)       |
| cool     | 68440  | Lumbriculida   | Lumbriculidae     |                  | Lumbriculidae              | 27.3                    | level 1 (strongest)       |
| cool     | 129890 | Diptera        | Chironomidae      | Micropsectra     | Micropsectra               | 27.4                    | level 1 (strongest)       |
| cool     | 115028 | Megaloptera    | Corydalidae       | Nigronia         | Nigronia                   | 27.6                    | level 1 (strongest)       |
| cool     | 129666 | Diptera        | Chironomidae      | Polypedilum      | Polypedilum aviceps        | 27.6                    | level 1 (strongest)       |
| cool     | 114229 | Coleoptera     | Elmidae           | Promoresia       | Promoresia                 | 27.6                    | level 1 (strongest)       |
| cool     | 115589 | Trichoptera    | Hydropsychidae    | Ceratopsyche     | Ceratopsyche sparna        | 28                      | level 1 (strongest)       |
| cool     | 128874 | Diptera        | Chironomidae      | Orthocladius     | Orthocladius               | 28.1                    | level 1 (strongest)       |
| cool     | 130929 | Diptera        | Athericidae       | Atherix          | Atherix                    | 28.6                    | level 1 (strongest)       |
| cool     | 115454 | Trichoptera    | Hydropsychidae    | Hydropsyche      | Hydropsyche betteni        | 29.1                    | level 1 (strongest)       |
| cool     | 102966 | Plecoptera     | Perlidae          | Paragnetina      | Paragnetina<br>immarginata | 27.4                    | level 2 (medium strength) |
| cool     | 68510  | Haplotaxida    | Enchytraeidae     |                  | Enchytraeidae              | 27.7                    | level 2 (medium strength) |
| cool     | 101645 | Odonata        | Aeshnidae         | Boyeria          | Boyeria                    | 28.3                    | level 2 (medium strength) |
| cool     | 129086 | Diptera        | Chironomidae      | Rheocricotopus   | Rheocricotopus             | 28.3                    | level 2 (medium strength) |
| cool     | 100825 | Ephemeroptera  | Baetidae          | Baetis           | Baetis brunneicolor        | 28.4                    | level 2 (medium strength) |
| cool     | 129975 | Diptera        | Chironomidae      | Sublettea        | Sublettea                  | 28.7                    | level 2 (medium strength) |
| cool     | 115278 | Trichoptera    | Philopotamidae    | Chimarra         | Chimarra aterrima          | 28.7                    | level 2 (medium strength) |
| cool     | 114177 | Coleoptera     | Elmidae           | Optioservus      | Optioservus                | 29                      | level 2 (medium strength) |
| cool     | 76569  | Basommatophora | Ancylidae         | Ferrissia        | Ferrissia                  | 29.1                    | level 2 (medium strength) |

Table 3L-3. List of warm water regional indicator taxa (US EPA GCRP 2012, unpublished); for more information, contact Jen Stamp Jen.Stamp@tetratech.com).

| Indicator | TSN    | Order           | Family            | Genus          | Regional_FinalID            | Tolerance<br>Limit (°C) | Notes                     |
|-----------|--------|-----------------|-------------------|----------------|-----------------------------|-------------------------|---------------------------|
| warm      | 128511 | Diptera         | Chironomidae      | Cardiocladius  | Cardiocladius               | 30.5                    | level 1 (strongest)       |
| warm      | 93773  | Amphipoda       | Gammaridae        | Gammarus       | Gammarus                    | 30.5                    | level 1 (strongest)       |
| warm      | 129957 | Diptera         | Chironomidae      | Rheotanytarsus | Rheotanytarsus exiguus      | 30.5                    | level 1 (strongest)       |
| warm      | 100808 | Ephemeroptera   | Baetidae          | Baetis         | Baetis intercalaris         | 30.3                    | level 1 (strongest)       |
| warm      | 114095 | Coleoptera      | Elmidae           | Stenelmis      | Stenelmis                   | 30.3                    | level 1 (strongest)       |
| warm      | 70493  | Neotaenioglossa | Hydrobiidae       |                | Hydrobiidae                 | 30.7                    | level 1 (strongest)       |
| warm      | 100676 | Ephemeroptera   | Heptageniidae     | Leucrocuta     | Leucrocuta                  | 30.7                    | level 1 (strongest)       |
| warm      | 101478 | Ephemeroptera   | Caenidae          | Caenis         | Caenis                      | 30.7                    | level 1 (strongest)       |
| warm      | 115276 | Trichoptera     | Philopotamidae    | Chimarra       | Chimarra obscura            | 30.7                    | level 1 (strongest)       |
| warm      | 129671 | Diptera         | Chironomidae      | Polypedilum    | Polypedilum convictum       | 30.6                    | level 1 (strongest)       |
| warm      | 115480 | Trichoptera     | Hydropsychidae    | Hydropsyche    | Hydropsyche scalaris        | 30.9                    | level 1 (strongest)       |
| warm      | 102139 | Odonata         | Coenagrionidae    | Argia          | Argia                       | 30.9                    | level 1 (strongest)       |
| warm      | 81391  | Veneroida       | Pisidiidae        | Sphaerium      | Sphaerium                   | 30.9                    | level 1 (strongest)       |
| warm      | 101405 | Ephemeroptera   | Leptohyphidae     | Tricorythodes  | Tricorythodes               | 30.9                    | level 1 (strongest)       |
| warm      | 129203 | Diptera         | Chironomidae      | Tvetenia       | Tvetenia vitracies          | 30.3                    | level 2 (medium strength) |
| warm      | 100835 | Ephemeroptera   | Baetidae          | Baetis         | Baetis flavistriga          | 29.9                    | level 2 (medium strength) |
| warm      | 116921 | Trichoptera     | Brachycentridae   | Brachycentrus  | Brachycentrus<br>appalachia | 30.5                    | level 2 (medium strength) |
| warm      | 53964  |                 |                   |                | Turbellaria                 | 30.3                    | level 2 (medium strength) |
| warm      | 116607 | Trichoptera     | Leptoceridae      | Oecetis        | Oecetis                     | 30.6                    | level 2 (medium strength) |
| warm      | 100713 | Ephemeroptera   | Heptageniidae     | Stenacron      | Stenacron                   | 30.6                    | level 2 (medium strength) |
| warm      | 115641 | Trichoptera     | Hydroptilidae     | Hydroptila     | Hydroptila                  | 30.5                    | level 2 (medium strength) |
| warm      | 129978 | Diptera         | Chironomidae      | Tanytarsus     | Tanytarsus                  | 30.3                    | level 2 (medium strength) |
| warm      | 129708 | Diptera         | Chironomidae      | Polypedilum    | Polypedilum scalaenum       | 30.7                    | level 2 (medium strength) |
| warm      | 128202 | Diptera         | Chironomidae      | Nilotanypus    | Nilotanypus                 | 30.6                    | level 2 (medium strength) |
| warm      | 128079 | Diptera         | Chironomidae      | Ablabesmyia    | Ablabesmyia                 | 30.7                    | level 2 (medium strength) |
| warm      | 117095 | Trichoptera     | Polycentropodidae | Neureclipsis   | Neureclipsis                | 30.7                    | level 2 (medium strength) |
| warm      | 129428 | Diptera         | Chironomidae      | Dicrotendipes  | Dicrotendipes               | 30.7                    | level 2 (medium strength) |

Table 3L-3. Continued...

| Indicator | TSN    | Order           | Family          | Genus          | Regional_FinalID   | Tolerance<br>Limit (°C) | Notes                         |
|-----------|--------|-----------------|-----------------|----------------|--------------------|-------------------------|-------------------------------|
| warm      | 115603 | Trichoptera     | Hydropsychidae  | Macrostemum    | Macrostemum        | 30.7                    | level 2 (medium strength)     |
| warm      | 129483 | Diptera         | Chironomidae    | Glyptotendipes | Glyptotendipes     | 31                      | level 2 (medium strength)     |
| warm      | 76698  | Basommatophora  | Physidae        | Physella       | Physella           | 30.6                    | limited regional distribution |
| warm      | 129671 | Diptera         | Chironomidae    | Polypedilum    | Polypedilum flavum | 30.7                    | limited regional distribution |
| warm      | 101570 | Ephemeroptera   | Polymitarcyidae | Ephoron        | Ephoron            | 30.9                    | limited regional distribution |
| warm      | 71541  | Neotaenioglossa | Pleuroceridae   |                | Pleuroceridae      | 31                      | limited regional distribution |
| warm      | 68872  | Tubificida      | Naididae        | Stylaria       | Stylaria lacustris | 31                      | limited regional distribution |
| warm      | 128215 | Diptera         | Chironomidae    | Pentaneura     | Pentaneura         | 31                      | limited regional distribution |

# APPENDIX 3M

Conceptual diagrams for rivers under future climate scenarios



**Conceptual Diagram SCENARIO 1: WARMING TEMPERATURES - River Habitat Vulnerabilities** 



Conceptual Diagram SCENARIO 2: INCREASE IN HEAVY RAINFALL EVENTS (WHICH COULD POTENTIALLY LEAD TO FLOODING) -Vulnerabilities


Conceptual Diagram SCENARIO 3: EXTENDED SUMMER LOW FLOWS, INCREASE IN SHORT-TERM DROUGHTS -River Habitat Vulnerabilities

## APPENDIX 3N

Rivers – Literature

#### RIVERS

Allan, J. D. and Flecker, A. S. (1993). Biodiversity conservation in running waters. Bioscience, 43(1), 32-43. Retrieved from ocw.um.es/ciencias/ecologia/lectura-obligatoria-1/allan-flecker.pdf

Allan, J. D., Palmer, M. A. and Poff, N. L. (2005). Climate change and freshwater ecosystems T.
E. Lovejoy and L. Hannah (Eds.), Climate Change and Biodiversity. (pp. 272-290). New Haven, CT: Yale University Press. Available from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2005

Allan, J. D., Wipfli, M. S., Caouette, J. P., Prussian, A. and Rodgers, J. (2003). Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences, 60(3), 309-320. Retrieved from users.iab.uaf.edu/~mark\_wipfli/pubs/2003\_Allan\_etal\_CJFAS.pdf

Archfield, S. A., Vogel, R. M., Steeves, P. A., Brandt, S. L., Weiskel, P. K. and Garabedian, S. P. (2010). The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts. (Scientific Investigations Report 2009–5227). Reston, VA: U.S. Geological Survey. Available from pubs.usgs.gov/sir/2009/5227/

Armstrong, D. S., Richards, T. A. and Brandt, S. L. (2010). Preliminary Assessment of Factors Influencing Riverine Fish Communities in Massachusetts. (Open-File Report 2010–1139, pp. 43) U.S. Geological Survey. Available from http://pubs.usgs.gov/of/2010/1139/

Arthington, A. H., Bunn, S. E., Poff, N. L. and Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications, 16(4), 1311–1318. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2006

Auerbach, D. A., Poff, N. L., McShane, R. R., Merritt, D. M., Pyne, M. I. and Wilding, T. (in press). Historical range of variation in streamflow as template for understanding stream responses to rapid climate change. Historical Environmental Variation in Conservation and Natural Resource Management Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2011

Baker, D. W., Bledsoe, B. P., Albano, C. M. and Poff, N. L. (2011). Downstream effects of diversion dams on sediment and hydraulic conditions of Rocky Mountain streams. River Research and Applications 27, 388-401. doi: 10.1002/rra.1376 Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2011

Besaw, L. E., Rizzo, D. M., Kline, M., Underwood, K. L., Doris, J. J., Morrissey, L. A., et al. (2009). Stream classification using hierarchical artificial neural networks: A fluvial hazard management tool. Journal of Hydrology, 373, 34–43.

Bonada, N. (2007). Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology, 13, 1658–1671.

Brown, J., Bach, L., Aldous, A. and Wyers, A. (nd). Overcoming data shortfalls to locate groundwater-dependent ecosystems and assess threats to groundwater quantity and quality. Presented at the International Association of Hydrogeologists. Retrieved from aquadoc.typepad.com/waterwired/files/iah\_paper\_jbrown\_final.pdf

Brown, J., Wyers, A., Aldous, A. and Bach, L. (2007). Groundwater and Biodiversity Conservation: A Methods Guide for Integrating Groundwater Needs of Ecosystems and Species into Conservation Plans in the Pacific Northwest. (pp. 176) The Nature Conservancy. Available from http://aquadoc.typepad.com/waterwired/2008/02/tnc-manual-grou.html

Chu, C., Jones, N. E., Mandrak, N. E., Piggott, A. R. and Minns, C. K. (2008). The influence of air temperature, groundwater discharge, and climate change on the thermal diversity of stream fishes in southern Ontario watersheds. 65(2), 297-308. Retrieved from http://www.nrcresearchpress.com/doi/abs/10.1139/f08-007

Climate Change and Freshwater. (2012). Climate change - a threat to aquatic ecosystems. Available from http://www.climate-and-freshwater.info/

Daufresne, M. and Boet, P. (2007). Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology, 13, 2467–2478. doi: 10.1111/j.1365-2486.2007.01449.x Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2007.01449.x/abstract

Doll, P. and Zhang, J. (2010). Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrology and Earth System Sciences, 14, 783–799. Retrieved from www.hydrol-earth-syst-sci.net/14/783/2010/hess-14-783-2010.pdf

Dossena, M., Yvon-Durocher, G., Grey, J., Montoya, J. M., Perkins, D. M., Trimmer, M., et al. (2012). Warming alters community size structure and ecosystem functioning Proceedings of the Royal Society. Retrieved from http://rspb.royalsocietypublishing.org/content/early/2012/04/10/rspb.2012.0394.short?rss=1

Douglas, T. (2006). Review of Groundwater-Salmon Interactions in British Columbia. (pp. 21) Watershed-Watch Salmon Society and Walter and Duncan Gordon Foundation. Prepared by RPBio. Available from www.sfu.ca/cstudies/science/resources/1273696130.pdf

Durance, I. and Ormerod, S. J. (2007). Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology, 13, 942–957.

Fiske, S. and Moore, A. (2012). What's Left in Vermont Streams after Irene: Monitoring Results From Long Term Reference Sites: Vermont Department of Environmental Conservation, Monitoring, Assessment & Planning Program.

Fleckenstein, J. H., Niswonger, R. G. and Fogg, G. E. (2006). River-aquifer interactions, geologic heterogeneity, and low-flow management. Ground water, 44(6), 837–852. Retrieved from baydelta.ucdavis.edu/files/crg/reports/.../GW-Fleckenstein\_et\_al.pdf

Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L. and Olden, J. D. (2009). Development of representative indicators of hydrologic alteration. Journal of Hydrology, 374, 136–147. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2009

Gibson, C. A., Meyer, J. L., Poff, N. L., Hay, L. E. and Georgakakos, A. (2005). Flow regime alterations under changing climate in two river basins: implications for freshwater ecosystems. River Research and Applications, 21(8), 849-864. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2005

Hamilton, A., Stamp, J. and Bierwagen, B. (2010). Vulnerability of biological metrics and multimetric indices used in biomonitoring programs to climate change effects based on future projections of observable patterns. Journal of the North American Benthological Society, 29(4), 1379-1396.

Hawkins, C. P. (2011). Effects of projected climate change on USA stream biodiversity: update on climate, hydrology, stream temperature, stream water chemistry, and biodiversity models: Utah State University.

Hay, J. (2004). Movement of salmonids in response to low flow: a literature review. New Zealand: Motueka Integrated Catchment Management Programme. Prepared by C. Institute. Available from

http://icm.landcareresearch.co.nz/knowledgebase/publications/public/Caw873\_Lowflow\_migration.pdf

Hogg, I. D. and Williams, D. D. (1996). Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology, 77(2), 395-407. Retrieved from http://www.jstor.org/stable/2265617

Hogg, I. D., Williams, D. D., Eadie, J. M. and Butt, S. A. (1995). The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology 20, 199-206.

Isaak, D. J., Wollrab, S., Horan, D. and Chandler, G. (2011). Climate change effects on stream and river temperatures across the Northwest U.S. from 1980 – 2009 and implications for salmonid fishes. Climatic Change. Retrieved from www.fs.fed.us/rm/pubs\_other/rmrs\_2011\_isaak\_d003.html

Jain, S. (2010). Adaptive water allocation and instream flow standards in a changing climate: Maine's Chapter 587.

Johnson, T. E., Butcher, J. B., Parker, A. and Weaver, C. P. (2011). Investigating the Sensitivity of U.S. Streamflow and Water Quality to Climate Change: The U.S. 3 EPA Global Change Research Program's "20 Watersheds" Project. Journal of Water Resources Planning and Management. Retrieved from http://ascelibrary.org/wro/resource/3/jwrmxx/129?isAuthorized=no

Kanno, Y. and Vokoun, J. C. (2010). Evaluating effects of water withdrawals and impoundments on fish assemblages in southern New England streams, USA. Fisheries Management and Ecology. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2400.2009.00724.x/abstract

Konrad, C. P., Brasher, A. M. D. and May, J. T. (2008). Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology, 53, 1983–1998. Retrieved from pubs.usgs.gov/fs/2010/3110/pdf/fs20103110.pdf

Le Quesne, T., Matthews, J. H., Von der Heyden, C., Wickel, A. J., Wilby, R., Hartmann, J., et al. (2010). Flowing Forward - Freshwater ecosystem adaptation to climate change in water resources management and biodiversity conservation. Water Working Notes, 28. Retrieved from www.worldwildlife.org/climate/.../WWFBinaryitem17968.pdf

Mandia, S. (2010). Climate Change Impact on Freshwater Wetlands, Lakes & Rivers. Available from http://profmandia.wordpress.com/2010/08/16/climate-change-impact-on-freshwater-wetlands-lakes-rivers/

Marks, C. O., Lutz, K. A. and Olivero Sheldon, A. P. (2011). Ecologically important floodplain forests in the Connecticut River watershed. (pp. 44) The Nature Conservancy Connecticut River Program. Available from

http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/connecticut/connecticutri ver/ct-river-floodplain-forests-paper.pdf

Martin, E. H. and Apse, C. D. (2011). Northeast Aquatic Connectivity - An Assessment of Dams on Northeastern Rivers. (pp. 102) The Nature Conservancy, Eastern Freshwater Program. Available from http://static.rcngrants.org/sites/default/files/final\_reports/NEAquaticConnectivity\_Report.pdf

Merritt, D. M., Scott, M. L., Poff, N. L., Auble, G. T. and Lytle, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55, 206–225. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2010

Milone & MacBroom. (2008). The Vermont Agency of Natural Resources Reach Habitat Assessment (RHA). (pp. 209) Vermont Agency of Natural Resources Departments of Environmental Conservation and Fish and Wildlife. Available from www.vtwaterquality.org/rivers/docs/rv\_RHAProtocolReport.pdf

Milone & MacBroom, I. (2009). The Vermont Culvert Aquatic Organism Passage Screening Tool. (pp. 120). Waterbury, VT: Vermont Agency of Natural Resources Department Fish and Wildlife. Available from

http://www.vtfishandwildlife.com/library/Reports\_and\_Documents/Aquatic%20Organism%20Pa ssage%20at%20Stream%20Crossings/\_The%20Vermont%20Culvert%20Aquatic%20Organism %20Passage%20Screening%20Tool.pdf

Morrice, J. A., Valett, M., Dahm, C. N. and Campana, M. E. (1997). Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrological Processes, 11(3), 253-267. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1085(19970315)11:3%3C253::AID-HYP439%3E3.0.CO;2-J/abstract

Nelson, K. C., Palmer, M. A., Pizzuto, J. E., Moglen, G. E., Angermeier, P. L., Hilderbrand, R. H., et al. (2009). Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options. Journal of Applied Ecology, 46, 154–163. doi: 10.1111/j.1365-2664.2008.01599.x Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695864/

Nislow, K. H. (2005). Forest change and stream fish habitat: lessons from 'Olde' and New England. Journal of Fish Biology, 67, 186-204. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.0022-1112.2005.00913.x/abstract

Nislow, K. H., Magilligan, F. J., Fassnacht, H., Bechtel, D. and Ruesink, A. (2002). Effects of dam impoundment on the flood regime of natural floodplain communities in the upper Connecticut River. Journal of the American Water Resources Association, 38(6), 1533-1548. Retrieved from http://dx.doi.org/10.1111/j.1752-1688.2002.tb04363.x

North Carolina Division of Water Quality (2004). Effects of Long Term Drought on Benthic Macroinvertebrate Communities in NC Streams and Tracking Their Recovery, 2002-2004.

North Carolina Division of Water Quality. (2005). Development of policy for protection of intermittent streams through the 401 water quality certification program (version 1.2). (CD 974043-00-0, pp. 15).

North Carolina Division of Water Quality. (2005). Post Hurricanes Frances, Ivan, and Jeanne Biological Monitoring (French Broad and Watauga River Basins) Biological Sampling, November 30-December 2, 2004.

Olden, J. D. and Naiman, R. J. (2010). Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology(55), 86–107. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2427.2009.02179.x/abstract

Olson, S. A. (2002). Flow-Frequency Characteristics of Vermont Streams. (Water-Resources Investigations Report 02-4238, pp. 46). Pembroke, NH: USGS.

Palmer, M. A., Lettenmaier, D. P., Poff, N. L., Postel, S., Richter, B. and Warner, R. (2009). Climate Change and River Ecosystems: Protection and Adaptation Options. Environmental Management 44, 1053–1068 Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2009

Paul, M. J. and Leppo, E. (2010). Another face of the changing climate: comparing hydrologic response to fluctuating climate with land use effects: Tetra Tech.

Pealer, S. and Dunnington, G. (2011). Climate Change and Vermont's Waters. Available from http://www.anr.state.vt.us/anr/climatechange/Adaptation.html

Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16, 391-409. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#1997

Poff, N. L. and Allan, J. D. (1995). Functional organization of stream fish assemblages in relation to hydrologic variability. Ecology, 76, 606-627. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#1995

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B., et al. (1997). The natural flow regime: a new paradigm for riverine conservation and restoration. BioScience, 47, 769-784. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#1997

Poff, N. L., Brinson, M. M. and Day, J. W. J. (2002). Aquatic ecosystems & Global climate change - Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. (pp. 56) Pew Center on Global Climate Change. Available from www.pewtrusts.org/our\_work\_report\_detail.aspx?id=30677

Poff, N. L., Richter, B., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., et al. (2010). The Ecological Limits of Hydrologic Alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55, 147-170. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2010

Poff, N. L. and Richter, B. D. (in press). Aquatic ecosystem sustainability in 2050. Environment and Water Resources in 2050: A Vision and Path Forward Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2011

Poff, N. L. and Ward, J. V. (1995). Herbivory under different flow regimes: a field experiment and test of a model with a benthic stream insect. Oikos, 71, 179-188. Retrieved from http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#1995

Poole, G. C. and C.H., B. (2001). An Ecological Perspective on In-Stream Temperature: Natural Heat Dynamics and Mechanisms of Human-Caused Thermal Degradation. Environmental Management, 27(6), 787–802. doi: 10.1007/s002670010188 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11393314

REFRESH. (2012). Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems. Available from http://www.refresh.ucl.ac.uk/about/background

Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G. and Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351, 139–153. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022169407007433

Sotiropoulos, J., Nislow, K. H. and Ross, M. R. (2006). Brook trout, Salvelinus fontinalis, microhabitat selection and diet under low summer stream flows. Fisheries Management and Ecology, 13(3), 149-155. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2400.2006.00487.x/abstract

Stamp, J., Hamilton, A., Zheng, L. and Bierwagen, B. (2010). Use of thermal preference metrics to examine state biomonitoring data for climate change effects. Journal of the North American Benthological Society, 29(4), 1410-1423.

Sweeney, B. W. and Blaine, J. G. (2007). Resurrecting the In-Stream Side of Riparian Forests. Journal of Contemporary Water Research & Education, 136, 17-27. Retrieved from http://opensiuc.lib.siu.edu/jcwre/vol136/iss1/3/

Tague, C., Grant, G., Farrell, M., Choate, J. and Jefferson, A. (2008). Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Climatic Change, 86, 189–210.

Torgersen, C. E., Ebersole, J. L. and Keenan, D. M. (2012). Primer for Identifying Cold-Water Refuges to Protect and Restore Thermal Diversity in Riverine Landscapes. (EPA 910-C-12-001, pp. 91). Seattle, WA: U.S. Environmental Protection Agency. Available from http://www.epa.gov/region10/pdf/water/torgersen\_etal\_2012\_cold\_water\_refuges.pdf van Vliet, M. T. H., Ludwig, F., Zwolsman, J. J. G., Weedon, G. P. and Kabat, P. (2011). Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research, 47, W02544. Retrieved from www.agu.org/pubs/crossref/2011/2010WR009198.shtml

Verdonschot, P. F. M. (2011). The significance of climate change in streams utilised by humans. Fundamental and Applied Limnology, 174, 101–116. Retrieved from http://library.wur.nl/WebQuery/wurpubs/384648

Vermont Agency of Natural Resources. (1993). Agency procedure for determining acceptable minimum stream flows. (pp. 6) Vermont Agency of Natural Resources. Available from http://www.anr.state.vt.us/dec/waterq/rivers/docs/rv\_flowprocedure.pdf

Vermont Agency of Natural Resources. (1996). Environmental protection rules, Chapter 16, water withdrawals for snowmaking. (pp. 6) Vermont Agency of Natural Resources. Available from http://www.vtwaterquality.org/rivers/docs/rv\_snowrule.pdf

Vermont Department of Environmental Conservation. (2004). Biocriteria for Fish and Macroinvertebrate Assemblages in Vermont Wadeable Streams and Rivers. Available from http://www.anr.state.vt.us/dec/waterq/bass/docs/bs\_wadeablestream1b.pdf

Vermont Department of Environmental Conservation (VT DEC). (2009). Vermont DEC River Management Program 2009 Annual Report. (pp. 18).

Vermont Department of Forests Parks and Recreation. (2006). Acceptable management practices for maintaining water quality on logging jobs in Vermont.

Wang, D. and Hejazi, M. (2011). Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 47, W00J12. Retrieved from www.agu.org/pubs/crossref/2011/2010WR010283.shtml

Wenger, S. J., Isaak, D. J., Luceb, C. H., Neville, H. M., Fausch, K. D., Dunham, J. B., et al. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. PNAS. Retrieved from www.pnas.org/cgi/doi/10.1073/pnas.1103097108

Wollheim, W. (2011). Impact of Climate Change and Variability on the Nation's Water Quality and Ecosystem State. Available from http://wsag.unh.edu/Wollheim/wollheim.html

Wolock, D. M. (2003). Base-flow index grid for the conterminous United States. (U.S. Geological Survey Open-File Report 03–263) U.S. Geological Survey. Available from http://water.usgs.gov/lookup/getspatial?bfi48grd

Wolock, D. M. and McCabe, G. J. (1999). Explaining spatial variability in mean annual runoff in the conterminous United States. Climate Research, 11, 149–159. Retrieved from http://ks.water.usgs.gov/pubs/abstracts/wolock.cr.html

Woodward, G., Perkins, D. M. and Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society, 365, 2093–2106. Retrieved from rstb.royalsocietypublishing.org/content/365/1549/2093.full.pdf

Yarnell, S. M., Viers, J. H. and Mount, J. F. (2010). Ecology and Management of the Spring Snowmelt Recession. Bioscience, 60(2), 114-127. Retrieved from watershed.ucdavis.edu/pdf/Yarnell\_etal\_BioScience2010.pdf

Zarriello, P. J., Parker, G. W., Armstrong, D. S. and Carlson, C. S. (2010). Effects of Water Use and Land Use on Streamflow and Aquatic Habitat in the Sudbury and Assabet River Basins, Massachusetts. (Scientific Investigations Report 2010–5042) U.S. Geological Survey and Massachusetts Executive Office of Environmental Affairs. Available from pubs.usgs.gov/sir/2010/5042/

Zheng, L. (2011). Thermal tolerance values of aquatic macroinvertebrates - Vermont dataset.

Zorn, T. G., Seelbach, P. W., Rutherford, E. S., Wills, T. C., Cheng, S. and Wiley, M. J. (2008). A Regional-scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. (pp. 50) State of Michigan Department of Natural Resources. Available from

http://www.michigandnr.com/publications/pdfs/IFR/ifrlibra/Research/reports/2089/RR2089-abstract.pdf

# APPENDIX 30

Lakes worksheets that were completed during follow-up meetings

|            | Code | Parameter                | Trend    | Projections (range = low to high emissions scenario)                                                                                                                           |  |
|------------|------|--------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | Α    | Annual temperature       | increase | by 2050, projected increase 3.7 to 5.8°F; by 2100, 5.0 to 9.5°F                                                                                                                |  |
| ature      | В    | Seasonal<br>temperature  | increase | by 2050, projected increase in winter (DJF) 4.3 to 6.1°F;<br>summer (JJA) 3.8 to 6.4°F                                                                                         |  |
| mper       | С    | # Hot days               | more     | more frequent and more intense; by end of century, northern cities can expect 30-60+ days of temperatures >90°F                                                                |  |
| Te         | D    | # Cold days              | fewer    | reduction in days with cold ( $<0^{\circ}$ F) temperatures                                                                                                                     |  |
|            | Ε    | Variability              | increase | greater variability (more ups and downs)                                                                                                                                       |  |
|            | F    | Annual precipitation     | increase | by end of century, projected total increase of 10% (about 4 inches per year)                                                                                                   |  |
|            | G    | Seasonal precipitation   | variable | more winter rain, less snow; by 2050, winter precipitation could<br>increase by 11 to 16% on average; little change expected in<br>summer, but projections are highly variable |  |
|            | Н    | Heavy rainfall events    | increase | more frequent and intense                                                                                                                                                      |  |
| gy         | Ι    | Soil moisture            | decrease | reduction in soil moisture and increase in evaporation rates in the summer                                                                                                     |  |
| drolo      | J    | Snow                     | decrease | fewer days with snow cover (by end of century could lose 1/4 to 1/2+ of snow-covered days; increased snow density                                                              |  |
| Hy         | К    | Spring flows             | earlier  | earlier snowmelt, earlier high spring flows; could occur 10 days to >2 weeks earlier                                                                                           |  |
|            | L    | Summer low flows         | longer   | extended summer low-flow periods; could increase by nearly a month under high emissions scenario                                                                               |  |
|            | Μ    | Ice dynamics             | changing | less ice cover, reduced ice thickness                                                                                                                                          |  |
|            | N    | Fluctuating lake levels  | increase | greater variability, greater amount of change in lake levels                                                                                                                   |  |
|            | 0    | Lake stratification      |          | some lakes may stratify earlier                                                                                                                                                |  |
| nts        | Р    | Flood events             | increase | more likely, particularly in winter and particularly under the high emissions scenario                                                                                         |  |
| me evel    | Q    | # of short-term droughts | increase | by end of century, under high emissions scenario, short terms<br>droughts could occur as much as once per year in some places                                                  |  |
| tre        | R    | Storms                   | increase | more frequent and intense (ice, wind, etc.)                                                                                                                                    |  |
| Ex         | S    | Fire                     |          | more likely                                                                                                                                                                    |  |
| 3.y        | Т    | Growing season           | longer   | by end of century, projected to be 4 to 6 weeks longer                                                                                                                         |  |
| 30lo       | U    | Onset of spring          | earlier  | by end of century, could be 1 to almost 3 weeks earlier                                                                                                                        |  |
| <b>n</b> o | V    | Onset of fall            | later    | by end of century, could arrive 2 to 3 weeks later                                                                                                                             |  |
| Phe        | W    | Biological interactions  |          | could potentially be disrupted                                                                                                                                                 |  |

### **EXPOSURES/KEY CLIMATE CHANGE FACTORS**

Add ins:

X – changing light conditions Y – spring runoff - reduced volume

#### List exposures that you think will have direct, negative impacts on this type of lake (we encourage you to use codes from the exposures list but free text is ok as well) Thermal ABCDE **Key Climate Change Factors** Hydrologic FGHJKLMNO Extreme PRS events/disturbance Phenology TUVW Other Warmer water may produce biological community changes to more warmadapted species and alter habitat and nursery function of littoral zones. Longer growing seasons will allow for greater annual primary production in littoral areas, more organic matter accumulation, and greater macrophyte growth. Reduced ice cover period and reduced snow cover on the ice will reduce albedo, resulting in greater heat absorption and earlier onset of thermal stratification, both of which will produce warming of summer epilimnetic Which of these waters at rates greater than climate-change induced regional air temperature exposures (or increases. combination of Longer period of thermal stratification could produce greater hypolimnetic exposures) do you think hypoxia at the end of the summer, which would promote greater phosphorus will have the greatest release from the sediments. negative impacts on Storms with high winds could increase shoreline erosion in large lakes. overall lake function? Very large flood events and associated sediment and nutrient loading could **Describe why** impact large, stratified lakes by increasing turbidity, reducing light penetration with both positive and negative influences on productivity, e.g., increased nutrients vs. reduced light. Severe drought conditions, or greater variation in annual precipitation, could result in lower water levels, sediment exposure, and drying, which would impair littoral habitat and promote mercury methylation. Aquatic invasive species will extend their range northward, risking infestation of Vermont lakes. **Vulnerability Rating** Medium **Confidence Score** High Increased cloud cover could reduce solar heating of surface waters, while reducing light required by planktonic and littoral primary producers. Changing wind patterns could also influence seasonal mixing and stratification events. **Sensitivity Factors** Early spring stratification and delayed fall mixing may reduce nutrient input from bottom sediments during mixing and thereby reduce overall primary production. Increased cloud cover could also reduce production.

#### FRONT – Stratified Lakes (contacts: Eric Smeltzer and Art Brooks)

| Describe ways in which you<br>think climate change may<br>indirectly impact lake<br>function                                             | Greater water level fluctuations with increased water withdrawals for irrigation, domestic use.                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe changes that you<br>think might occur in the food<br>web due to climate change                                                  | Increased dominance by cyanobacteria, loss of cold-water species.                                                                                                                                                                                                                                     |
| Are there any exposures that<br>you think might be beneficial<br>to overall lake function? If<br>so, please describe                     | Longer growing seasons will enhance growth of shoreline vegetative<br>buffers.<br>Longer terrestrial growing seasons will allow for greater use of cover<br>crops on cropland, reducing soil erosion and nutrient loading.                                                                            |
| Please rate vulnerability to non-climatic stressors                                                                                      | High                                                                                                                                                                                                                                                                                                  |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change | Sediment and nutrient loading from agricultural and urban runoff, and<br>from unstable river channels.<br>Aquatic invasive species.<br>Shoreline encroachment.<br>(These stressors are affected by climate change too, but non-climatic<br>anthropogenic influences on these stressors are dominant.) |
| Notes                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |

## BACK – Stratified Lakes (contacts: Eric Smeltzer and Art Brooks)

## FRONT – Unstratified Lakes (contacts: Eric Smeltzer and Art Brooks)

| List e.<br>codes                                                                                                                                                        | xposures that you think<br>from the exposures list | will have direct, negative impacts on this type of lake (we encourage you to use<br>but free text is ok as well)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| tors                                                                                                                                                                    | Thermal                                            | A B C D E<br>F G H J K L M N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| nge Fact                                                                                                                                                                | Hydrologic                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ate Char                                                                                                                                                                | Extreme<br>events/disturbance                      | PQRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| / Clin                                                                                                                                                                  | Phenology                                          | TUVW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Key                                                                                                                                                                     | Other                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Which of these<br>exposures (or<br>combination of<br>exposures) do you think<br>will have the greatest<br>negative impacts on<br>overall lake function?<br>Describe why |                                                    | Warmer water may produce biological community changes to more warm-<br>adapted species and alter habitat and nursery function of littoral zones.<br>Longer growing seasons will allow for greater annual primary production,<br>more organic matter accumulation, greater macrophyte growth, and<br>shallowing.<br>Small, shallow lakes are hydrologically sensitive to individual flood events<br>and associated sediment and nutrient loading.<br>Small, shallow lakes are sensitive to drought conditions resulting in lower<br>water levels, sediment exposure, and drying, which would impair littoral<br>habitat and promote mercury methylation.<br>Some unstratified lakes could become stratified with increased surface<br>warming that would prevent full mixing by the wind. This could cause<br>hypoxia in the bottom waters and promote release of phosphorus from the<br>sediments, stimulating algal blooms.<br>Aquatic invasive species will extend their range northward, risking infestation<br>of Vermont lakes. |  |  |
| Vulnerability Rating                                                                                                                                                    |                                                    | Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Confidence Score                                                                                                                                                        |                                                    | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Sensitivity Factors                                                                                                                                                     |                                                    | Increased cloud cover could reduce solar heating and limit light required by phytoplankton and macrophytes, thereby reducing primary production and the accumulation of organic matter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

| BACK – Unstratified Lakes (contacts: Eric Smeltzer and Art Brooks)                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Describe ways in which you<br>think climate change may<br>indirectly impact lake<br>function                                             | Changes in the watersheds that could result in more erosion and<br>increased nutrient and sediment input. Reduced shading along the<br>shoreline.<br>Greater water level fluctuations with increased water withdrawals for<br>irrigation, domestic use.                                                                                                                                                                                                                        |  |  |  |
| Describe changes that you<br>think might occur in the food<br>web due to climate change                                                  | More heat tolerant algal species, cyanobacteria and exotic southern<br>species of zooplankton, invertebrates (southern crayfish) fishes, etc.                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Are there any exposures that<br>you think might be beneficial<br>to overall lake function? If<br>so, please describe                     | Shorter periods of ice cover will reduce the chance of winterkill from<br>dissolved oxygen depletion. Less snow cover on the ice will permit<br>greater photosynthetic oxygen production during winter, also reducing<br>the risk of winterkill.<br>Longer growing seasons will enhance growth of shoreline vegetative<br>buffers.<br>Longer terrestrial growing seasons will allow for greater use of cover<br>crops on cropland, reducing soil erosion and nutrient loading. |  |  |  |
| Please rate vulnerability to<br>non-climatic stressors                                                                                   | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| List non-climatic stressors<br>that affect this group;<br>highlight those that you think<br>pose a greater threat than<br>climate change | Sediment and nutrient loading from agricultural and urban runoff, and<br>from unstable river channels.<br>Aquatic invasive species.<br>Shoreline encroachment.<br>(These stressors are affected by climate change too, but non-climatic<br>anthropogenic influences on these stressors are dominant.)                                                                                                                                                                          |  |  |  |
| Notes                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

Lake classification scheme used by VT Fish & Wildlife for this exercise

#### Sublittoral

The sublittoral zone is located below the area of light penetration, and macrophyte growth. Generally oxygen levels are adequate, except in extremely eutrophic conditions.

#### Rocky Littoral Area or Shoal

This zone is located in the wave swept shallow shoreline or shoal areas of lakes. Many macroinvertebrate species are dependent on hard substrates like shale/cobble or woody debris for habitat.

#### Mud - Sand Littoral Areas

Mud and sand littoral zones are located in protected coves and bays often associated with macrophyte beds, however the species actually live in the substrate, not on the macrophytes.

#### Macrophyte Bed

Macrophyte beds are generally found in areas with deep sediments. Macroinvertebrate species are often associated with certain macrophytes as either a food source or resting substrate.

Table 2. A tentative classification of macroinvertebrate assemblages in Vermont lakes. The lake type was generated from the macrophyte classification. The original macrophyte class of mesotrophic-eutrophic was split into two classes for this macroinvertebrate classification. Invertebrate genera listed in table are suspected to be dominant and characteristic of each category.

|                                                              | Physical Habitat Type                  |                                        |                                             |                                             |                                                       |
|--------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| Lake Type                                                    | Profundal                              | Sublittoral                            | Mud-Sand                                    | Macrophyte                                  | Rocky Littoral                                        |
| Dystrophic<br>Tannic<br>Color>30 pt-co<br>ANC<10,            | Zalutschia<br>Chironomus<br>Chaoborus  | Zalutschia<br>Musculium                | Hyalela<br>azteca<br>Musculium              | Dytiscidae<br>Corixidae<br>Notonectida<br>e | Ferressia<br>californica<br>Trebelos<br>Phaenopsectra |
| Clear<br>Acidic/Oligotrop<br>hic<br>ANC<10, Ca<3,<br>pH <5.5 | Sialis<br>Procladius                   | Sialis<br>Heterotrissocladi<br>us      | Dytiscidae<br>Corixidae<br>Notonectida<br>e | Dytiscidae<br>Corixidae<br>Notonectida<br>e | Tribelos<br>Phaenopsectra                             |
| Oligotrophic<br>ANC Moderate                                 | Pisidium<br>Amphipoda                  | ?                                      | ?                                           | Amnicola<br>limosa                          | Amnicola limosa                                       |
| Mesotrophic<br>ANC.moderate-<br>high<br>ph>6                 | Hexagenia<br>Pisidium                  | Hexagenia<br>Pisidium                  | Hexagenia                                   | Amnicola<br>limosa<br>Physidae              | Amnicola limosa<br>Stenonema<br>Physidae              |
| Eutrophic,<br>oxygen<br>limited                              | Chaoborus<br>Oligochaeta<br>Chironomus | Chaoborus<br>Oligochaeta<br>Chironomus | ?                                           | ?                                           | ?                                                     |

Other potential standing-water assemblage types

#### Taken from A Classification of The Aquatic Communities of Vermont

#### Shortcomings With this Classification and Recommendations for Further Work:

A major deficiency of this classification is that it does not take into account species abundances. In the field, data are collected as semi-quantitative abundances, by species and by lake littoral segment. For efficiency, these data are only recorded in digital form as species lists by lake. Yet paper files at the VT DEC, Water Quality Division, contain all of the data necessary to conduct this above analysis using abundance data. A re-analysis of the VT DEC aquatic macrophyte database using abundance data and multivariate techniques would demonstrate not only the distribution of species across 229 lakes, but also the occurrence of species groupings across literally thousands of individual lake littoral segments, or plots. Conducting such an analysis would vastly increase the statistical validity of the analysis. Under this scenario, we could evaluate the natural occurrence of species groups, as influenced by sediment type as well as the environmental variables included in the present analysis, independently of the lake on which the species exists. The result would be a much more robust classification which would include habitat-specific assemblages.

| Lake Type                                                                  | Conservation<br>Priority | Best Examples of<br>Type                                                                                                                                            | Representative Macrophytes                                                                                                                                                                                                  | Representative Fishes                                                                                                                                                             |
|----------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Dystrophic</b><br>>1,500 feet<br>ANC <15 mg/l<br>tannic water           | moderate                 | Branch Pond<br>(Sunderland)<br>Bourn Pond<br>(Sunderland)<br>Grout Pond (Stratton)<br>Wheeler Pond<br>(Brunswick)<br>Wolcott Pond<br>(Wolcott)                      | Glyceria borealis<br>Isoetes echinospora<br>Potamogeton epihydrus var. ramosus<br>Potamogeton confervoides<br>Potamogeton bicupulatus<br>Potamogeton oakesianus<br>Nuphar variegata<br>(as the dominant member of Nymphaea) | Brown Bullhead<br>Golden Shiner<br>Brook Trout                                                                                                                                    |
| High<br>Elevation,<br>Acidic<br>>1,500 feet<br>ANC <15 mg/l<br>clear water | moderate                 | South Pond<br>(Marlboro)<br>Forester Pond<br>(Jamaica)<br>Little Pond<br>(Woodford)                                                                                 | Nymphoides odorata<br>Nuphar variegata<br>(as the dominant member of Nymphaea)<br>Myriophyllum tenellum<br>Potamogeton confervoides                                                                                         | Brown bullhead<br>Golden Shiner<br>Brook Trout                                                                                                                                    |
| Oligotrophic<br>phosphorus<br><11 Φg/l                                     | moderate                 | Shadow Lake<br>(Concord)<br>Lake Seymour<br>(Morgan)<br>Lake Willoughby<br>(Westmore)<br>Sunset Lake (Benson)<br>Little Averill Lake<br>(Averill)                   | Lobelia dortmanna*<br>Eriocaulon septangulare*<br>Littorella americana*<br>Sagittaria sp. (submersed sterile rosette)<br>*as the dominant growth                                                                            | Lake Trout<br>Rainbow Smelt<br>Burbot<br>Round Whitefish                                                                                                                          |
| Mesotrophic-<br>Eutrophic<br>moderate ANC<br>phosphorus<br>11-25 Φg/l      | high                     | Burr Pond (Sudbury)<br>Beebe Pond<br>(Hubbardton)<br>Glen Lake (Castleton)<br>Hinkum Pond<br>(Sudbury)<br>Lake Iroquois<br>(Hinesburg, Williston)<br>Lake Champlain | Ceratophyllum demersum<br>Lemna minor<br>Potamogeton illinoensis<br>Potamogeton praelongus<br>Potamogeton zosteriformis<br>Myriophyllum sibericum (esp. high<br>ANC)<br>Spirodela sp. (submersed sterile rosette)           | Esox sp.(Chain Pickerel<br>and Northern Pike)<br>Golden Shiner<br>Emerald Shiner<br>Bluntnose Minnow<br>White Sucker<br>Brown Bullhead<br>Bluegill or Pumpkinseed<br>Yellow Perch |

Table 1. Classification of macrophyte assemblages occurring on Vermont lakes as identified by divisive hierarchical clustering, canonical correspondence analysis, and validation testing.

Lakes worksheets completed by VT Fish & Wildlife

| we ent                                            |                                                                                                                                       | ,                            |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| ate Change Factors                                | Thermal                                                                                                                               | Dystrophic -b,c,e HEA -b,c,e |
|                                                   | Hydrologic                                                                                                                            | Dystrophic -n, HEA -n,       |
|                                                   | Extreme<br>events/disturbance                                                                                                         | Dystrophic -p,q HEA -q       |
| Clim                                              | Phenology                                                                                                                             |                              |
| Key                                               | Other                                                                                                                                 | У                            |
| Whic<br>(or co<br>expos<br>have<br>impac<br>habit | h of these exposures<br>ombination of<br>oure) do you think will<br>the greatest negative<br>cts on this type of<br>at? Describe why. | Dystrophic -p,q HEA -q       |
| Vulne                                             | erability Rating                                                                                                                      | M - moderately               |
| Confi                                             | dence Score                                                                                                                           | Low confidence               |
| Sensi                                             | tivity Factors                                                                                                                        |                              |

## Habitat Worksheet - Dystrophic-High Elevation Acidic – PAGE 1 (contact: Steve Parren)

| Dystrophic-High Elevation Acidic – PAGE 2 (contact: Steve Parren)                                                                                   |                                                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>habitat                                                 |                                                                                      |  |  |  |
| Are there any exposures that<br>you think might be beneficial<br>to this type of habitat? If so,<br>please describe                                 | Dystrophic - HEA -<br>B-M - increase in seasonal temperature would reduce freezedown |  |  |  |
| Please rate vulnerability to<br>non-climatic stressors                                                                                              | L - Slightly                                                                         |  |  |  |
| List non-climatic stressors that<br>affect this group; highlight<br>those that you think pose a<br>greater threat than climate<br>change            | Dystrophic - A (acid rain), B HEA - A (acid rain), B                                 |  |  |  |
| Do you actively manage this<br>type of habitat? If so, describe<br>how (BMPs, regulatory<br>mechanisms, etc.)                                       |                                                                                      |  |  |  |
| List species associated with this<br>type of habitat that you think<br>will be <i>most vulnerable</i> to<br>climate change effects.<br>Describe why | Dystrophic - brook trout HEA - brook trout                                           |  |  |  |

| List ex<br>encour                                       | posures that you think w<br>age you to use codes fro                                                                              | ill have direct, negative impacts on this type of<br>m the exposures list but free text is ok as well) | (we |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|
|                                                         | Thermal                                                                                                                           | Strat -a,b,c,d Unstrat -a,b,c,e                                                                        |     |
| Key<br>Clima                                            | Hydrologic                                                                                                                        | Strat - g,j,m,n,o Unstrat - h,j,m,n                                                                    |     |
| te<br>Chan<br>ge                                        | Extreme<br>events/disturbance                                                                                                     | Strat - p,q,r Unstrat -p,q,r                                                                           |     |
| racio<br>rs                                             | Phenology                                                                                                                         | Strat -T,w Unstrat -T,w                                                                                |     |
|                                                         | Other                                                                                                                             | Strat -x,y Unstrat -x,y                                                                                |     |
| Whick<br>(or co:<br>exposi<br>have t<br>impac<br>habita | n of these exposures<br>mbination of<br>ure) do you think will<br>he greatest negative<br>ts on this type of<br>at? Describe why. | Strat -a,b,c,d,o,n Unstrat -b,c,n                                                                      |     |
| Vulne                                                   | rability Rating                                                                                                                   | Strat -M moderately Unstrat - H Highly                                                                 |     |
| Confidence Score                                        |                                                                                                                                   | Strat - moderately Unstrat - moderately                                                                |     |
| Sensitivity Factors                                     |                                                                                                                                   | Strat - depth and volume Unstrat -                                                                     |     |

## Habitat Worksheet - Mesotrophic/Eutrophic stratified & unstratified – PAGE 1 (contact: Steve Parren)

| Describe ways in which you<br>think climate change may<br>indirectly impact this type of<br>habitat                                                 | Strat -more stormwater runoff Unstrat - more stormwater runoff                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Are there any exposures that<br>you think might be beneficial<br>to this type of habitat? If so,<br>please describe                                 |                                                                                 |
| Please rate vulnerability to non-climatic stressors                                                                                                 | M - moderately                                                                  |
| List non-climatic stressors that<br>affect this group; highlight<br>those that you think pose a<br>greater threat than climate<br>change            | Strat -C,E,F,G,I Unstrat -C,E,F,G,I                                             |
| Do you actively manage this<br>type of habitat? If so, describe<br>how (BMPs, regulatory<br>mechanisms, etc.)                                       | No                                                                              |
| List species associated with this<br>type of habitat that you think<br>will be <i>most vulnerable</i> to<br>climate change effects.<br>Describe why | Strat - cold water species lake trout, smelt, northern pike Unstrat -           |
| List species associated with this<br>type of habitat that you think<br>will <i>do better</i> due to climate<br>change. Describe why                 | Sun fish for both strat and unstrat will benefit from warmer water temperatures |

### Mesotrophic/Eutrophic stratified & unstratified – PAGE 2 (contact: Steve Parren)

## Habitat Worksheet - <u>Oligotrophic Lakes - stratified</u> – PAGE 1 (contact: Steve Parren)

| List ex<br>from ti                                    | posures that you think w<br>he exposures list but free                                                                              | vill have direct, negative impacts on this type of (we encourage you to use codes<br>e text is ok as well)                             |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Thermal                                                                                                                             | A,b,c,d                                                                                                                                |
| Key<br>Clima                                          | Hydrologic                                                                                                                          | m,n,o                                                                                                                                  |
| te<br>Chan<br>ge                                      | Extreme<br>events/disturbance                                                                                                       | p,q                                                                                                                                    |
| rs                                                    | Phenology                                                                                                                           |                                                                                                                                        |
|                                                       | Other                                                                                                                               | X (changing light conditions)                                                                                                          |
| Whicl<br>(or co<br>expos<br>have t<br>impac<br>habita | n of these exposures<br>mbination of<br>ure) do you think will<br>the greatest negative<br>ets on this type of<br>at? Describe why. | A,b,c,d,o,m<br>Temperature and stratification will have the greatest negative impact.<br>Changes in albedo will affect temp absorption |
| Vulne                                                 | rability Rating                                                                                                                     | L - slightly vulnerable                                                                                                                |
| Confi                                                 | dence Score                                                                                                                         | Highly confident                                                                                                                       |
|                                                       |                                                                                                                                     | Deep and cold is the mediating factor                                                                                                  |
| Sensit                                                | ivity Factors                                                                                                                       |                                                                                                                                        |
|                                                       |                                                                                                                                     |                                                                                                                                        |

| Ongotroph                         | <u>ic Lakes - stratmen</u> – PAGE 2 (contact: Steve Parren)                  |
|-----------------------------------|------------------------------------------------------------------------------|
|                                   | Heavy rains increasing stormwater runoff increasing sedimentation and        |
| Describe ways in which you        | reduced light penetration- shoreline infrastructure increasing stormwater    |
| think climate change may          | pollution                                                                    |
| indirectly impact this type of    |                                                                              |
| habitat                           |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
| Are there any exposures that      |                                                                              |
| you think might be beneficial     |                                                                              |
| to this type of habitat? If so,   |                                                                              |
| please describe                   |                                                                              |
|                                   |                                                                              |
|                                   | L - Slightly Vulnerable                                                      |
|                                   |                                                                              |
| Please rate vulnerability to      |                                                                              |
| non-climatic stressors            |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
| List non-climatic stressors that  |                                                                              |
| affect this group; highlight      |                                                                              |
| those that you think pose a       | E (docks and ramps, hardening), f,g,i                                        |
| greater threat than climate       |                                                                              |
| change                            |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
| Do you actively manage this       |                                                                              |
| type of habitat? If so, describe  |                                                                              |
| how (BMPs, regulatory             | N, not the habitat itself                                                    |
| mechanisms, etc.)                 |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |
| List species associated with this |                                                                              |
| type of habitat that you think    | Cold water species in general that rely on stratification - round whitefish, |
| will be <i>most vulnerable</i> to | lake trout,                                                                  |
| climate change effects.           |                                                                              |
| Describe wny                      |                                                                              |
|                                   |                                                                              |
|                                   |                                                                              |

## <u>Oligotrophic Lakes - stratified</u> – PAGE 2 (contact: Steve Parren)

# APPENDIX 3P

Conceptual diagrams for lakes under future climate scenarios



**Conceptual Diagram SCENARIO 1: WARMING TEMPERATURES – Lake Habitat Vulnerabilities** 



Conceptual Diagram SCENARIO 2: INCREASE IN HEAVY RAINFALL EVENTS (WHICH COULD POTENTIALLY LEAD TO FLOODING) -Vulnerabilities

# APPENDIX 3Q

Lakes – Literature

### LAKES

Allan, J. D., Palmer, M. A. and Poff, N. L. (2005). Climate change and freshwater ecosystems T.
E. Lovejoy and L. Hannah (Eds.), Climate Change and Biodiversity. (pp. 272-290). New Haven, CT: Yale University Press. Available from
http://rydberg.biology.colostate.edu/poff/PoffPublicationsPDF.htm#2005

Beier, C. M., Stella, J. C., Dovciak, M. and McNulty, S. A. (2012). Local climatic drivers of changes in phenology at a boreal-temperate ecotone in eastern North America. Climatic Change. doi:10.1007/s10584-012-0455-z Retrieved from http://www.esf.edu/faculty/beier/

Borwick, J., Buttle, J. and Ridgway, M. S. (2006). A topographic index approach for identifying groundwater habitat of young-of-year brook trout (Salvelinus fontinalis) in the land–lake ecotone. Canadian Journal of Fisheries and Aquatic Science, 63, 239–253. doi:10.1139/F05-212 Retrieved from http://www.harkness.ca/journal\_pub.htm#2000s

Brooks, A. and Zastrow, J. (2002). The Potential Influence of Climate Change on Offshore Primary Production in Lake Michigan. J. Great Lakes Res., 28(4), 597–607.

Brown, J., Bach, L., Aldous, A. and Wyers, A. (nd). Overcoming data shortfalls to locate groundwater-dependent ecosystems and assess threats to groundwater quantity and quality. Presented at the International Association of Hydrogeologists. Retrieved from aquadoc.typepad.com/waterwired/files/iah\_paper\_jbrown\_final.pdf

Brown, J., Wyers, A., Aldous, A. and Bach, L. (2007). Groundwater and Biodiversity Conservation: A Methods Guide for Integrating Groundwater Needs of Ecosystems and Species into Conservation Plans in the Pacific Northwest. (pp. 176) The Nature Conservancy. Available from http://aquadoc.typepad.com/waterwired/2008/02/tnc-manual-grou.html

Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. and Brookes, J. D. (2012). Ecophysiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46, 1394-1407.

Climate Change and Freshwater. (2012). Climate change - a threat to aquatic ecosystems. Available from http://www.climate-and-freshwater.info/

Dibike, Y., Prowse, T., Bonsal, B., de Rham, L. and Saloranta, T. (2011). Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. International Journal of Climatology, 32(5), 695-709.

Dossena, M., Yvon-Durocher, G., Grey, J., Montoya, J. M., Perkins, D. M., Trimmer, M., et al. (2012). Warming alters community size structure and ecosystem functioning Proceedings of the Royal Society. Retrieved from

http://rspb.royalsocietypublishing.org/content/early/2012/04/10/rspb.2012.0394.short?rss=1

Kosten, S., Huszar, V. L. M., Becares, E., Costa, L. S., Van Donk, E., Hansson, L., et al. (2012). Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 18, 118–126. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02488.x/abstract

Luehm, N., Penn, C., Oliver, A., Perkins, P. and Koslow, J. (nd). Mercury methylation and climate change in Lake Champlain. (pp. 11). Available from www2.uvm.edu/~wbowden/.../Risk.../Methylmercury\_report.doc

Mandia, S. (2010). Climate Change Impact on Freshwater Wetlands, Lakes & Rivers. Available from http://profmandia.wordpress.com/2010/08/16/climate-change-impact-on-freshwater-wetlands-lakes-rivers/

Mooij, W. M., Hülsmann, S., De Senerpont Domis, L. N., Nolet, B. A., Bodelier, P. L. E., Boert, C. M., et al. (2005). The impact of climate change on lakes in the Netherlands: a review. Aquatic Ecology 39, 381-400.

Netherlands Institute of Ecology. (nd). Effects of climate change on lake functioning. Available from http://www.nioo.knaw.nl/node/236

Pembrook, H. and Kellogg, J. (2012). Acid lakes monitoring program in Vermont.

Poff, N. L., Brinson, M. M. and Day, J. W. J. (2002). Aquatic ecosystems & Global climate change - Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. (pp. 56) Pew Center on Global Climate Change. Available from www.pewtrusts.org/our work report detail.aspx?id=30677

Pomati, F., Matthews, B., Jokela, J., Schildknecht, A. and Ibelings, B. W. (in press). Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake. Retrieved from http://oikos6.ekol.lu.se/submit\_detail.php?journal=oik&msid=o20055

REFRESH. (2012). Adaptive Strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems. Available from http://www.refresh.ucl.ac.uk/about/background

Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G. and Tuppad, P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351, 139–153. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022169407007433

Schneider, P. and Hook, S. J. (2010). Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters, L22405, L22405. doi:10.1029/2010GL045059 Retrieved from http://www.agu.org/pubs/crossref/2010/2010GL045059.shtml

Schneider, P., Hook, S. J., Radocinski, R. G., Corlett, G. K., Hulley, G. C., Schladow, S. G., et al. (2009). Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophysical Research Letters, 36, L22402. Retrieved from www.agu.org/pubs/crossref/2009/2009GL040846.shtml

Vermont Department of Environmental Conservation Water Quality Division Lakes and Ponds Section (nd). Annotation of Lake Water Quality Summary Information Forms (pp. 4): Vermont Department of Environmental Conservation.

Verta, M., Salo, S., Korhonen, M., Porvari, P., Paloheimo, A. and Munthe, J. (2010). Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes. Science of The Total Environment, 408(17), 3639-3647. 10.1016/j.scitotenv.2010.05.006 Retrieved from http://www.sciencedirect.com/science/article/pii/S0048969710004791

Wollheim, W. (2011). Impact of Climate Change and Variability on the Nation's Water Quality and Ecosystem State. Available from http://wsag.unh.edu/Wollheim/wollheim.html

Wolock, D. M. (2003). Base-flow index grid for the conterminous United States. (U.S. Geological Survey Open-File Report 03–263) U.S. Geological Survey. Available from http://water.usgs.gov/lookup/getspatial?bfi48grd

Woodward, G., Perkins, D. M. and Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society, 365, 2093–2106. Retrieved from rstb.royalsocietypublishing.org/content/365/1549/2093.full.pdf